- Как подобрать автомат для электродвигателя?
- Автоматический выключатель для защиты электродвигателя — как правильно подобрать?
- Задачи устройств для защиты электродвигателей
- Расчет автомата для электродвигателя
- Современные устройства электрозащиты силовых агрегатов
- Особенности защиты электрических двигателей в производственных условиях
- Заключение
- Автоматы защиты двигателей
- Принцип работы автомата защиты двигателей
- Схема подключения автомата защиты двигателей
- Основные функции защиты
- Выбор автомата защиты
- Подбираем автоматический выключатель для электродвигателя
- Зачем использовать автоматический выключатель с электродвигателем
- Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования.
- Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования, учитывая сечение токопроводящего кабеля.
- Как правильно подобрать автоматический включатель для электродвигателя
Как подобрать автомат для электродвигателя?
Автоматический выключатель для защиты электродвигателя — как правильно подобрать?
При подборе автоматических выключателей, способных защитить электрические моторы от повреждения в результате КЗ или чрезмерно высоких нагрузок, необходимо учитывать большую величину пускового тока, нередко превышающую номинал в 5-7 раз. Наиболее мощным стартовым перегрузкам подвержены асинхронные силовые агрегаты, обладающие короткозамкнутым ротором. Поскольку это оборудование широко применяется для работы в производственных и бытовых условиях, то вопрос защиты как самого устройства, так и питающего кабеля очень актуален. В этой статье речь пойдет о том, как правильно рассчитать и выбрать автомат защиты электродвигателя.
Задачи устройств для защиты электродвигателей
Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.
Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:
- Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
- Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
- Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.
Управляющая и защитная автоматика для двигателя на видео:
- Отключение установки, если нагрузка перестала подаваться на вал.
- Защита силового агрегата от долгих перегрузок.
- Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
- Индикация рабочих режимов, а также оповещение об аварийных состояниях.
Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.
Расчет автомата для электродвигателя
Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.
Внутреннее устройство автомата защиты двигателя на видео:
Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.
Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.
Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.
Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.
Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).
Современные устройства электрозащиты силовых агрегатов
Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.
Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.
Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.
Особенности защиты электрических двигателей в производственных условиях
Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.
Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:
Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.
Заключение
В этом материале мы подробно осветили тему защитных устройств для электрических двигателей, и разобрались с тем, как подобрать автомат для электромотора и какие параметры при этом должны быть учтены. Наши читатели могли убедиться, что расчеты, которые производятся при этом, совсем несложны, а значит, подобрать аппарат для сети, в которую включен не слишком мощный силовой агрегат, вполне можно самостоятельно.
Автоматы защиты двигателей
2021-02-13 Промышленное 5 комментариев
Автоматы защиты двигателей, или по другому мотор-автоматы, предназначены в первую очередь для защиты электродвигателей от перегрева и последствий короткого замыкания, а также могут использоваться в качестве основного или аварийного выключателя. То есть по сути они совмещают в одном корпусе два устройства — автоматический выключатель и тепловое реле.
Ранее, до того как стали повсеместно применяться мотор-автоматы, для защиты двигателей использовались тепловые реле в паре с контактором.
По такой схеме тепловое реле, при превышении двигателем потребляемого тока нагрузки, размыкает цепь катушки контактора, отключая его силовые контакты и таким образом защищая двигатель. Схема рабочая, проверенная, но не лишенная недостатков. В первую очередь к ним стоит отнести неспособность тепловых реле защитить от КЗ, поэтому необходимо дополнительно использовать автоматические выключатели. Да и габариты такой конструкции из контактора и теплового реле получаются достаточно большими.
Поэтому с появлением автоматов защиты двигателей, тепловые реле стали отходить на второй план и на данный момент, их применение довольно ограничено.
Стоит сразу сказать, что по своим характеристикам, автоматы защиты двигателей несколько отличаются от обычных автоматических выключателей. В первую очередь тем, что:
- Учитываются время-токовые характеристики. При запуске двигателя пусковой ток может значительно превышать номинальный ток двигателя. Если точнее, то пусковой ток можно рассчитать, зная номинальный ток двигателя и величину кратности пускового тока Кп ( коэффициент кратности пускового тока к номинальному значению — Iпуск/Iном). Данная характеристика указывается в технических характеристиках, на шильде двигателя она отсутствует. I пуск = Iн х Кп. Например, при номинальном токе двигателя 20 А и кратности пускового тока 6, пусковой ток будет составлять 120 А. При таком токе обычный автоматический выключатель с время-токовой характеристикой B (ток отключения электромагнитной защиты от 3·In до 5·In, где In — номинальный ток) или С (от 5·In до 10·In) может отключится по электромагнитной защите. Автоматы защиты двигателей имеют уставку срабатывания электромагнитного расцепителя в зависимости от номинала, составляющую от 7,5 до 17,5 In.
- Все мотор-автоматы имеют температурную компенсацию (примерно от -25 до +60 °C) для того, чтобы исключить влияние внешней температуры на работу автомата, так как при изменении окружающей температуры может изменятся уставка теплового расцепителя, что может в свою очередь привести к ложным срабатываниям.
- Предельная отключающая способность (максимальный ток КЗ, при котором аппарат способен отключить нагрузку) автоматов защиты двигателя значительно выше (25-100кА), чем у стандартных автоматических выключателей — 4,5 — 6кА.
- Регулируемая настройка теплового расцепителя, в зависимости от номинала двигателя.
Принцип работы автомата защиты двигателей
Электромагнитный расцепитель выполнен в виде катушки соленоида, внутри которой расположен стальной сердечник с возвратной пружиной. Под действием электрического тока короткого замыкания сердечник втягивается в катушку, преодолевая сопротивление пружины и воздействует на механизм расцепления, в следствии чего контакты размыкаются.
Принцип работы тепловых расцепителей автомата такой же, как у тепловых реле. Имеется биметаллическая пластина, состоящая из двух пластин, которые сделаны из материалов с разными коэффициентами теплового расширения. Под воздействием высокой температуры, возникающей в следствии прохождения тока, превышающего номинальный, пластина начинает изгибаться, давить на механизм расцепителя и под действием пружины происходит размыкание контактов, тем самым обесточивается цепь.
Сразу после срабатывания защиты, вновь включить автомат не получится, таким образом обеспечивается выдержка времени для охлаждения двигателя после его аварийного останова.
Уставка срабатывания задается при помощи поворотного регулятора на лицевой части.
Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.
Схема подключения автомата защиты двигателей
Автоматический выключатель следует устанавливать перед другими аппаратами в цепи. Это позволяет защитить не только сам двигатель, но и например, контактор от повреждения в случае перегрузки или короткого замыкания. Также, как и в случае автоматических выключателей, автомат защиты двигателей можно дополнительно оснастить вспомогательными контактами (контакты состояния, аварийный контакт), которые можно задействовать, например, для индикации состояния.
В случае подключения трехфазной нагрузки схема подключения стандартная и не вызывает вопросов, а вот в случае однофазной нагрузки (стоит отметить, что все мотор автоматы выпускаются только в трехполюсном исполнении), иногда встречаюсь с подключением, когда просто задействуют один силовой контакт автомата защиты. Но такое подключение неправильное, необходимо, как на рисунке ниже слева, задействовать все три контакта.
Кстати, обратите внимание, что автомат защиты двигателя имеет свое условно-графическое обозначение в схемах, отличающееся от обозначения обычных автоматических выключателей. А вот буквенное обозначение у них идентично.
Основные функции защиты
- Защита от токов короткого замыкания в цепи питания или внутри электродвигателя;
- Защита от длительных перегрузок, связанных с превышением механической нагрузки на валу двигателя;
- Защита от асимметрии фаз и обрыва фазного провода;
- Тепловая защита от перегрева двигателя;
- Обеспечение выдержки времени для охлаждения двигателя после его аварийной остановки после перегрева;
- Индикация режимов работы и аварийных состояний;
Выбор автомата защиты
В случае прямого запуска, когда двигатель включается в работу с помощью мотор-автомата и контактора, необходимо в первую очередь знать его мощность. Эту информацию можно найти либо в технических характеристиках на двигатель, либо в паспортных данных, которые указаны на шильде.
Следующим шагом подбираем автомат, исходя из номинальной мощности двигателя. У различных фирм-производителей можно найти таблицы характеристик, где указаны номинальный рабочий ток и диапазон регулировки автоматов защиты в зависимости от мощности двигателя. В частности, на рисунке ниже приведена таблица соответствия автоматов защиты двигателей компании Allen Bradley.
И последним этапом выставляем необходимый ток отключения при помощи регулятора диапазона. Обычно указывается, что он должен быть больше или равен номинальному току электродвигателя. Но желательно, чтобы ток срабатывания защиты превышал на 10-20% номинальный ток двигателя.
То есть в случае, если номинальный ток двигателя составляет например 10 А, умножаем это значение на 1,1. Получаем 11 А. Это значение тока и выставляем регулятором.
И еще хотел сказать пару слов о конструктивном исполнении мотор автоматов. В первую очередь следует отметить, что по способу управления существует два типа автоматов — кнопочные и с поворотным выключателем. Также клеммы могут быть либо винтовые, либо с пружинным контактом ( применяются для двигателей, мощностью до 2 кВт). Можно еще отметить наличие кнопки Тест на лицевой стороне корпуса, позволяющей имитировать срабатывание защиты автомата для проверки его работоспособности.
И в заключении хотел отметить, что эксплуатация двигателей без защитных устройств часто приводит к их выходу из строя, в следствии перегрузки, обрыва фазы, скачков напряжения и т.д. А это в свою очередь приводит к финансовым затратам, простою оборудования. Поэтому автоматы защиты двигателей являются необходимым элементом и не стоит на них экономить, тем более, что цены на них на данный момент вполне приемлемые.
Подбираем автоматический выключатель для электродвигателя
Сейчас, автоматические выключатели (АВ) пережили огромнейший скачок в своем развитии. Никто не использует плавкие предохранители или что-то подобное ввиду их очень весомых недостатков в отличие от АВ.
При этом, количество и разнообразие устройств выросло до той степени, что очень часто нужно знать, как подобрать автоматический выключатель для электродвигателя. Для того, чтобы не ошибиться в выборе автоматического выключателя, нужно иметь представление о его основных характеристиках и, конечно же, параметрах.
Первое, это номинальный ток автомата. Это то значение, на которое рассчитан автомат для нормальной работы. Все чаще, автоматы идут с регуляторами диапазона задаваемого номинального тока. Но если вы укажите величину больше, чем допустима на автомате, сработает защита, и он не будет работать.
Второе – тип автомата. Он определяет кратковременное значение силы тока, при котором автомат сработает. Если у вас автоматический выключатель подсоединен к нужной аппаратуре, то токи, возникающие при ее включении, могут быть в десятки раз больше кратковременного значения силы тока, указанного на выключателе.
Отличным примером могут послужить электродвигатели. При их запуске кратковременная сила тока возрастает как раз в 10 раз.
Существует три основных типа выключателей автоматических по кратковременному значению силы тока:
- Тип В – кратковременное увеличение значения силы тока в 3-5 раз;
- Тип С – увеличение в 5-10 раз;
- Тип Д (D) – 10-50 раз;
Следующий параметр – время срабатывания. Отрезок времени, начиная с момента, когда контролируемый параметр превысил предельное значение и до момента разомкнутого состояния контактов. По времени срабатывания, автоматические выключатели делятся на:
- Селективные – время срабатывания – 1 секунда;
- Нормальные – время от 0,02 до 0.1 секунды;
- Быстродействующие – 0, 005 секунды.
Селективные АВ используются в цепи автоматических выключателей, поскольку имеют контакт с задержкой на размыкание. Такие АВ ставятся в начале цепи автоматов, после них идут менее мощные. При возникновении аварийной ситуации, благодаря селективности, они отключат только некоторую часть оборудования, которая подвержена угрозе, а все остальное находится в рабочем состоянии.
И последнее – отключающая способность. Для автоматических выключателей это максимальное значение, которое кратковременно присутствует в цепи, для обеспечения работы выключателя(сваривание контактов при токах больше нормы). Оно может быть в сотню раз больше обычного рабочего тока. Возникает при коротком замыкании.
Нельзя забывать и о механизмах расцепления. Их существует всего два вида:
- Тепловая отсечка. В данном варианте используется пластина, которая выполнена из двух разных металлов с отличными друг от друга показателями теплопроводности. Через нее протекает рабочий ток цепи. Если значение этого тока имеет номинальное или несколько меньшее значение – пластина находится в замкнутом положении.
Но если, в течении длительного времени значение тока превысит номинальное значение – пластина нагреется, деформируется и разомкнется цепь. Тут важен факт, что ток влияет длительно и может превышать норму хоты бы на 10%. - Если вам нужна защита от больших и резких скачков тока, то следует обращать внимание на электромагнитное расцепление. Тут механизм построен на основе соленоида. Задается максимальное значение, при котором должно произойти размыкание цепи. Как только оно достигается в определенный отрезок времени (скачок), соленоид «втягивается» и размыкает контакт – защита сработала.
В нашем интернет-магазине представлены разные версии автоматических выключателей АВ2М с отличными друг от друга приводами.
Зачем использовать автоматический выключатель с электродвигателем
Автоматические выключатели были разработаны для того, чтобы запускать, защищать от перегрузок, выключать и аварийно выключать электродвигатели в случае возникновения аварийной ситуации.
В любом случае, автомат послужит защитой двигателю в экстренной ситуации. К тому же, не стоит забывать, что если вы используете электродвигатели на несколько фаз, то и выключатель может «контролировать» их работу и своевременное отключение. А это очень ценно, особенно если у вас работает высоковольтное оборудование. Его покупка или ремонт обойдутся не мало, а если сработает защита, то в худшем случае заменить нужно будет только выключатель.
Потому, автоматические выключатели являются ценным оборудованием не со стороны высокой стоимости, а со стороны высокой защиты еще более дорогостоящего и ценного оборудования, не говоря уже о помещении и работниках.
Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)
Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования.
Способ №1.
Для того что бы определить номинал автомата, необходимо знать суммарную мощность приборов, которые будут через него подключаться. Т.е. примерно прикидываем. что мы будем включать, например, в розетки (электрочайник , холодильник , телевизор и т.д.) складываем мощность этих приборов и исходя из этого вычисляем рабочий ток розеточной группы, используя следующую формулу: при однофазной нагрузке на 1 кВт мощности приходится ток, равный 5А . При трехфазной нагрузке на 1 кВт приходится ток, равный 3А . Допустим, у нас получилось 3,6 кВт , умножаем на 5. Получается 18А — это рабочий ток. Номинальный то автомата должен быть больше рабочего — выбираем автомат на 25А. Таким же образом рассчитываем номинал автомата для подключения, например, трехфазного электродвигателя мощностью 4 кВт: 4 умножаем на 3 получаем 12А -рабочий ток, выбираем автомат на 16А . При выборе автоматов для защиты асинхронных трехфазных электродвигателей необходимо учитывать, что пусковой ток электродвигателя в 5-7 раз больше номинального. Поэтому выбирать автомат по номиналу нельзя , т.к. при запуске его будет постоянно выбивать. Для асинхронных электродвигателей с коротко-замкнутым ротором при небольшой частоте включения и легких условиях пуска (время пуска 5-10 секунд) номинальный ток автомата должен быть не менее 0,4 пускового тока электродвигателя. При тяжёлых условиях работы (частые запуски, продолжительность разбега до 40 секунд) соотношение рекомендуется увеличить с 0,4 до 0,6.
Способ №2.
Первое, что мы должны сделать, так это посмотреть паспорта электроприборов, включаемых в одну сеть и выяснить мощности каждого. К примеру, чайник 2 кВт, лампа 100 Вт, холодильник 600 Вт, стиральная машина 2,2 кВт. Подключать мы будем к одной фазе одним кабелем. То есть на конце 3 розетки и один выключатель. Значит, мощность на кабель ляжет суммарная 2 кВт + 100 Вт + 600 Вт + 2,2 кВт. Чтобы не путаться, давайте перейдем к ваттам. 2000 Вт + 100 Вт + 600 Вт + 2200 Вт (кВт — это киловатты, то есть тысячи ватт. Поэтому кВт умножаем на 1000). В итоге мы получаем 4900 Вт. Еще раз повторимся, это суммарная мощность всех приборов, приходящаяся на один кабель. Теперь нам надо просто узнать ток. Берем формулу и подставляем значения. W=U*I отсюда I=W/U I=4900/220 I=22,27A. А здесь вы меня остановите и скажите: «А ведь у стиральной машины и холодильника есть моторы. Как же с реактивным сопротивлением?» И будите правы, но при хорошем заземлении и хорошем нуле для однофазных моторов про реактивные сопротивления можно забыть. Вроде все хорошо, да не все. Опять моторы портят все. Если нагревательные приборы всегда потребляют ток один и тот же, то моторы имеют, так называемый пусковой ток. И он при старте очень большой. Для этих целей производители автоматов предусмотрели такую вещь, как уставка по току. Вот и все.
Что такое уставка по току? Спросите вы. А вот что. Все автоматы делятся на три группы. B C D. Эти группы делят так: B от 3 до 5, C от 5 до 10, D от 10 до 14. Что эти цифры означают. В автомате есть токовый расцепитель. Он срабатывает, когда ток превышает заданный предел. Так вот чтобы при старте мотора автомат не выбивал, существует уставка по току. Это то что держит автомат несколько секунд при старте мотора. А цифра означает всего-навсего коэффициент. То есть если ток при старте превысит номинальный в 4 раза, то автомат нам нужен группы В. А если в 10 раз, то D. Для стиральных машин и холодильников подойдет группа C. И для нашего примера нам нужен автомат на 25А и группа С. Маркировка будет такой С25
Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования, учитывая сечение токопроводящего кабеля.
При подборе автоматической защиты для электродвигателя, необходимо так же учитывать сечение токопроводящего кабеля, чтобы избежать плавления или возгорания электрической проводки.
Здесь имеет значение материал провода, количество жил кабеля, и то, как он уложен, открыто, в стену и т.д.
Допустим, у нас двухжильный медный провод с сечением 4 мм.кв. уложенный в стену, смотрим по первой таблице максимально допустимую силу тока, она равна 32 А. Но при выборе автоматического выключателя эту силу тока нужно уменьшать до ближайшего нижнего значения, для того чтобы провод не работал на пределе. Получается, что нам нужен автомат на 25 А.
Так же нужно помнить, если нужен автомат на розеточную группу, то брать выше 16 А нет смысла, так как розетки больше 16 А выдержать не могут, они просто начинают гореть. На освещение самый оптимальный автомат на 10 А.
Допустимый длительный ток для проводов и кабелей с медными жилами
Как правильно подобрать автоматический включатель для электродвигателя
Для того что бы определить номинал автомата, необходимо знать суммарную мощность приборов, которые будут через него подключаться. Т.е. примерно прикидываем, что мы будем включать, например, в розетки (электрочайник , холодильник , телевизор и т.д.) складываем мощность этих приборов и исходя из этого вычисляем рабочий ток розеточной группы, используя следующую формулу: при однофазной нагрузке на 1 кВт мощности приходится ток, равный 5А . При трехфазной нагрузке на 1 кВт приходится ток, равный 3А . Допустим, у нас получилось 3,6 кВт , умножаем на 5. Получается 18А — это рабочий ток. Номинальный то автомата должен быть больше рабочего — выбираем автомат на 25А.
Таким же образом рассчитываем номинал автомата для подключения, например, трехфазного электродвигателя мощностью 4 кВт: 4 умножаем на 3 получаем 12А -рабочий ток, выбираем автомат на 16А . При выборе автоматов для защиты асинхронных трехфазных электродвигателей необходимо учитывать, что пусковой ток электродвигателя в 5-7 раз больше номинального. Поэтому выбирать автомат по номиналу нельзя , т.к. при запуске его будет постоянно выбивать. Для асинхронных электродвигателей с коротко-замкнутым ротором при небольшой частоте включения и легких условиях пуска (время пуска 5-10 секунд) номинальный ток автомата должен быть не менее 0,4 пускового тока электродвигателя. При тяжёлых условиях работы (частые запуски, продолжительность разбега до 40 секунд) соотношение рекомендуется увеличить с 0,4 до 0,6.
Первое, что мы должны сделать, так это посмотреть паспорта электроприборов, включаемых в одну сеть и выяснить мощности каждого. К примеру, чайник 2 кВт, лампа 100 Вт, холодильник 600 Вт, стиральная машина 2,2 кВт. Подключать мы будем к одной фазе одним кабелем. То есть на конце 3 розетки и один выключатель. Значит, мощность на кабель ляжет суммарная 2 кВт + 100 Вт + 600 Вт + 2,2 кВт. Чтобы не путаться, давайте перейдем к ваттам. 2000 Вт + 100 Вт + 600 Вт + 2200 Вт (кВт — это киловатты, то есть тысячи ватт. Поэтому кВт умножаем на 1000). В итоге мы получаем 4900 Вт. Еще раз повторимся, это суммарная мощность всех приборов, приходящаяся на один кабель.
Теперь нам надо просто узнать ток. Берем формулу и подставляем значения. W=U*I отсюда I=W/U I=4900/220 I=22,27A. А здесь вы меня остановите и скажите: «А ведь у стиральной машины и холодильника есть моторы. Как же с реактивным сопротивлением?» И будите правы, но при хорошем заземлении и хорошем нуле для однофазных моторов про реактивные сопротивления можно забыть. Вроде все хорошо, да не все. Опять моторы портят все. Если нагревательные приборы всегда потребляют ток один и тот же, то моторы имеют, так называемый пусковой ток. И он при старте очень большой. Для этих целей производители автоматов предусмотрели такую вещь, как уставка по току. Вот и все.
Что такое уставка по току? Спросите вы. А вот что. Все автоматы делятся на три группы. B ,C и D. Эти группы делят так: B от 3 до 5, C от 5 до 10, D от 10 до 14. Что эти цифры означают. В автомате есть токовый расцепитель. Он срабатывает, когда ток превышает заданный предел. Так вот чтобы при старте мотора автомат не выбивал, существует уставка по току. Это то что держит автомат несколько секунд при старте мотора. А цифра означает всего-навсего коэффициент. То есть если ток при старте превысит номинальный в 4 раза, то автомат нам нужен группы В. А если в 10 раз, то D. Для стиральных машин и холодильников подойдет группа C. И для нашего примера нам нужен автомат на 25А и группа С. Маркировка будет такой С25.
Как правильно подобрать автоматический включатель для электродвигателя и другого электротехнического оборудования, учитывая сечение токопроводящего кабеля.
При подборе автоматической защиты для электродвигателя, необходимо так же учитывать сечение токопроводящего кабеля, чтобы избежать плавления или возгорания электрической проводки.
Здесь имеет значение материал провода, количество жил кабеля, и то, как он уложен, открыто, в стену и т.д.
Допустим, у нас двухжильный медный провод с сечением 4 мм.кв. уложенный в стену, смотрим по первой таблице максимально допустимую силу тока, она равна 32 А. Но при выборе автоматического выключателя эту силу тока нужно уменьшать до ближайшего нижнего значения, для того чтобы провод не работал на пределе. Получается, что нам нужен автомат на 25 А.
Так же нужно помнить, если нужен автомат на розеточную группу, то брать выше 16 А нет смысла, так как розетки больше 16 А выдержать не могут, они просто начинают гореть. На освещение самый оптимальный автомат на 10 А.
Допустимый длительный ток для проводов и кабелей с медными жилами
Сечение токопроводящей жилы, мм2 | Ток, а, для проводов, проложенных | |||||
открыто | в одной трубе | |||||
2-ух одножильных | 3-ех одножильных | 4-ех одножильных | 1-го двухжильного | 1-го трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
Допустимый длительный ток для проводов и кабелей с алюминиевыми жилами