От чего зависит потеря напряжения в проводах?
Потери напряжения в проводах
При передаче электрической энергии по коротким проводам сопротивлением их можно пренебречь. При большой длине их (L>10 М) сопротивлениемпроводов пренебрегать нельзя, так как электрический ток вызовет в них заметное падение напряжение.
Разность напряжений в начале и в конце линии равна
падению напряжению в проводах и называется
потерей напряжения ΔU .
При неизменном напряжении в начале линии
напряжение в конце линии, т. е. на приёмнике,
Чтобы линия была экономичной, необходимо выбирать сечение проводов S в зависимости от:
I – тока — определяется потребителем (приемником энергии);
ρ — удельного сопротивления материала жилы: медь или алюминий;
l – длины линии, определяется удалённостью потребителя от источника тока.
Взаимосвязь параметров определяется формулой:
При заданной допустимой потери напряжения определяют необходимо сечение проводов линии
по формуле:
Найденное по формуле сечение, округляют до ближайшего большего стандартного. Это сечение должно быть проверено на допустимое нагревание проводов.
При передаче электроэнергии нужно выбрать так сечение проводов линии передачи, чтобы обеспечить нормальное рабочее напряжение Uном (номинальное напряжение) на зажимах приемников электроэнергии. В особенности это важно для осветительных установок, так как при повышении напряжения только на 5% по отношению к номинальному, длительность горения нормальной лампы уменьшается на 50%; при понижении напряжения на те же 5% световой поток этой лампы уменьшается на 18%.
Согласно ПУЭ (Правилам устройства электроустановок):
– на зажимах приборов рабочего освещения производственных помещений и общественных зданий, а так же в прожекторных установках наружного освещения допускается отклонения напряжения (потеря напряжения):
ΔU, % ≤ 2,5% Uн
— на зажимах электродвигателей:
ΔU, % ≤ 5% Uн
Мощность потерь в линии электропередач (ЛЭП) определяется
Коэффициент полезного действия линии (КПД)
с увеличением нагрузки уменьшается
Основным метод снижения потерь напряжения – увеличение напряжения ЛЭП.
В нашей стране существует стандартная шкала переменных напряжений, при которых производится передача энергии на дальние расстояния: 110, 220, 330, 500, 750, 1150 кВ. Например – при повышении напряжения в два раза, если сохранить процент потерь мощности неизменным, можно или уменьшить сечение проводов линии в четыре раза или удлинить линию электропередач в четыре раза.
| | следующая лекция ==> | |
Керамика – наиболее распространен фарфор | | | Продолговатый мозг — Myelencephalon (medulla oblongata) |
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Влияние длины и сечения кабеля на потери по напряжению
Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:
из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.
При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.
Почему падает напряжение и как это зависит от длины и сечения проводников
Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.
Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:
- удельного сопротивления материала – ρ;
- длины отрезка проводника – l;
- площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.
Все четыре параметра связывает следующее соотношение:
очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.
Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).
Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.
Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.
Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.
Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.
Смотрите также другие статьи :
К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.
На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.
От чего зависит потеря напряжения в проводах?
Во время передачи электроэнергии по проводам к электроприемникам ее небольшая часть расходуется на сопротивление самих проводов, т.е. на их нагрев. Чем выше протекаемый ток и больше сопротивление провода, тем больше на нем будет потеря напряжения. Величина тока зависит от подключенной нагрузки, а сопротивление провода тем больше, чем больше его длина. Логично? Поэтому нужно понимать, что провода большой длины могут быть не пригодны для подключения какой-либо нагрузки, которая, в свою очередь, хорошо будет работать при коротких проводах того же сечения.
В идеале все электроприборы будут работать в нормальном режиме, если к ним подается то напряжение, на которые они рассчитаны. Если провод рассчитан не правильно и в нем присутствуют большие потери, то на вводе в электрооборудование будет заниженное напряжение. Это очень актуально при электропитании постоянным током, так как тут напряжение очень низкое, например 12 В, и потеря в 1-2 В тут будет уже существенной.
Чем опасна потеря напряжения в электропроводке?
- Отказом работы электроприборов при очень низком напряжении на входе.
В выборе кабеля необходимо найти золотую середину. Его нужно подобрать так, чтобы сопротивление провода при нужной длине соответствовало конкретному току и исключить лишние денежные затраты. Конечно, можно купить кабель огромного сечения и не считать в нем потери напряжения, но тогда за него придется переплатить. А кто хочет отдавать свои деньги на ветер? Давайте ниже разберемся, как учесть потери напряжения в кабеле при его выборе.
Для того чтобы избежать потерь мощности нам нужно уменьшить сопротивление провода. Мы знаем что, чем больше сечение кабеля, тем меньше его сопротивление. Поэтому эта проблема в длинных линиях решается путем увеличения сечения жил кабеля.
Вспомним физику и перейдем к небольшим формулам и расчетам.
Напряжение на проводе мы можем узнать по следующей формуле, зная его сопротивление (R, Ом) и ток нагрузки (I, А).
U=RI
Сопротивление провода рассчитывается так:
R=рl/S, где
р — удельное сопротивление провода, Ом*мм 2 /м;
l — длина провода, м;
S — площадь поперечного сечения провода, мм 2 .
Удельное сопротивления это величина постоянная. Для меди она составляет р=0,0175 Ом*мм 2 /м, и для алюминия р=0,028 Ом*мм 2 /м. Значения других металлов нам не нужны, так как провода у нас только с медными или с алюминиевыми жилами.
Приведу небольшой пример расчета для медного провода. Для алюминиевого провода суть расчета будет аналогичной.
Например, мы хотим установить группу розеток в гараже и решили протянуть туда медный кабель от дома длинной 50 м сечением 1,5 мм 2 . Там будем подключаться нагрузка 3,3 кВт (I=15 А).
Учтите, что ток «бежит» по 2-х жильному кабелю туда и обратно, поэтому «пробегаемое» им расстояние будет в два раза больше длины кабеля (50*2=100 м).
Потеря напряжения в данной линии будет:
Что составляет практически 9% от номинального (входного) значения напряжения.
Значит в розетках будет уже напряжение: 220-17,5=202,5 В. Этого будет маловато для нормальной работы электрооборудования. Также свет может гореть тускло (в пол накала).
На нагрев провода будет выделяться мощность P=UI=17,5*15=262,5 Вт.
Также учтите, что здесь не учтены потери в местах соединения (скрутках), в вилке электроприбора, в контактах розетки. Поэтому реальные потери напряжения будут больше полученных значений.
Давайте повторим данный расчет, но уже для провода сечением 2,5 мм 2 .
U=(рl)/s*I=0,0175*100/2,5*15=10,5 В или 4,7%.
Теперь повторим данный расчет, но уже для провода сечением 4 мм 2 .
U=(рl)/s*I=0,0175*100/4*15=6,5 В или 2,9%.
Согласно ПУЭ, отклонения напряжения в линии должны составлять не более 5%.
Поэтому в нашем случае нужно выбирать кабель сечением 2,5 мм 2 для нагрузки мощностью 3,3 кВт (15 А), а не 1,5 мм 2 .
Для постоянного тока такие сечения при указанных длинах использовать нельзя. Допусти, что необходимо запитать электроприбор током 15 А от источника постоянного тока 12 В (например, от аккумулятора или понижающего трансформатора). Используется кабель сечением 2,5 мм 2 длинной 50 м.
Потери тут будут 10,5 В. Это значит, что на входе в электроприбор будет присутствовать напряжение 12-10,5=1,5 В. Это бред и ничего работать не будет. Даже кабель сечением 25 мм 2 не спасет. Тут выход один — это нужно переносить источник питания ближе к потребителю.
Если ваша розетка находится очень далеко от щитка, то обязательно посчитайте потери напряжения в данной линии.
Не забываем улыбаться:
Звонок мужу в командировку:
— Дорогой, а почему в кране нет воды?
— Понимаешь, мы живем на 22 этаже и давления, которое создает насос возможно недостаточно.
— Милый, а почему газа нет?
— Понимаешь, сейчас зима и давление в магистральном газопроводе вследствие большого разбора несколько понижено.
— Родной, но почему же тогда нет электроэнергии?!
— Пойди заплати за коммуналку, дура!
Что такое потери напряжения и причины образования потерь напряжения
Для понимания, что такое потеря напряжения , рассмотрим векторную диаграмму напряжения трехфазной линии переменного тока (рис. 1) с одной нагрузкой в конце линии ( I ).
Предположим, что вектор тока разложен на составляющие I а и I р. На рис. 2 в масштабе построены векторы фазного напряжения в конце линии U 3ф и тока I , отстающего от него по фазе на угол φ2 .
Для получения вектора напряжения в начале линии U1 ф следует у конца вектора U 2ф построить в масштабе напряжения треугольник падений напряжения в линии (abc). Для этого вектор а b , равный произведению тока на активное сопротивление линии ( I R), отложен параллельно току, а вектор b c , равный произведению тока на индуктивное сопротивление линии ( I Х), — перпендикулярно вектору тока. При этих условиях прямая, соединяющая точки О и с, соответствует величине и положению в пространстве вектора напряжения в начале линии ( U1 ф) относительно вектора напряжения в конце линии ( U2 ф). Соединив концы векторов U1 ф и U2 ф, получим вектор падения напряжения на полном сопротивлении линии ac=IZ.
Рис. 1. Схема с одной нагрузкой на конце линии
Рис. 2. Векторная диаграмма напряжений для линии с одной нагрузкой. Потери напряжения в линии.
Условились называть потерей напряжения алгебраическую разность фазных напряжений в начале и конце линии, т. е. отрезок ad или почти равный ему отрезок ас’.
Векторная диаграмма и выведенные из нее соотношения показывают, что потеря напряжения зависит от параметров сети, а также от активной и реактивной составляющих тока или мощности нагрузки.
При расчете величины потери напряжений в сети активное сопротивление необходимо учитывать всегда, а индуктивным сопротивлением можно пренебречь в осветительных сетях и в сетях, выполненных сечениями проводов до 6 мм2 и кабелей до 35 мм2.
Определение потери напряжения в линии
Потерю напряжения для трехфазной системы принято обозначать для линейных величин определять по формуле
где l — протяженность соответствующего участка сети, км.
Если заменить ток мощностью, то формула примет вид:
где Р — активная мощность, Q — реактивная мощность, кВар; l — протяженность участка, км; Uн — номинальное напряжение сети, кВ.
Изменение напряжения в линии
Допустимые потери напряжения
Для каждого приемника электроэнергии допускаются определенные потери напряжения . Например, асинхронные двигатели в нормальных условиях допускают отклонение напряжения ±5%. Это значит, что если номинальное напряжение данного электродвигателя составляет 380 В, то напряжения U ‘доп = 1,05 U н = 380 х1,05 = 399 В и U «доп = 0,95 U н = 380 х 0,95 = 361 В следует считать его предельно допустимыми значениями напряжения. Естественно, что все промежуточные напряжения, заключенные между значениями 361 и 399 В, также будут удовлетворять потребителя и составят некоторую зону, которую можно назвать зоной желаемых напряжений.
Так как при работе предприятия имеет место постоянное изменение нагрузки (мощность или ток, протекающий по проводам в данное время суток), то в сети будут иметь место и различные потери напряжения, изменяющиеся от наибольших значений, соответствующих режиму максимальной нагрузки dUma х, до наименьших dUmin , соответствующих минимальной нагрузке потребителя.
Для подсчета величины этих потерь напряжения следует воспользоваться формулой:
Из векторной диаграммы напряжений (рис. 2) следует, что действительное напряжение у приемника U2ф можно получить, если из напряжения в начале линии U1 ф вычесть величину dU ф, или, переходя к линейным, т. е. междуфазным напряжениям, получим U2 = U1 — dU
Расчет потерь напряжения
Пример. Потребитель, состоящий из асинхронных двигателей, подключен к шинам трансформаторной подстанции предприятия, на которых поддерживается постоянное в течение суток напряжение U1 = 400 В.
Наибольшая нагрузка потребителя отмечена в 11 ч утра, при этом потеря напряжения dUмакс = 57 В, или dUмакс % = 15%. Наименьшая нагрузка потребителя соответствует обеденному перерыву, при этом dUмин — 15,2 В, или dUмин % = 4%.
Необходимо определить действительное напряжение у потребителя в режимах наибольшей и наименьшей нагрузок и проверить лежи г ли оно в зоне желаемых напряжений.
Решение. Определяем действительные значения напряжений:
U2 макс = U1 — dUмакс = 400 — 57 = 343 В
U2 мин = U1 — dUмин = 400 — 15,2 = 384,8 В
Желаемые напряжения для асинхронных двигателей с Uн = 380 В должны удовлетворять условию:
399 ≥ U2 жел ≥ 361
Подставив в неравенство вычисленные значения напряжений, убеждаемся, что для режима наибольших нагрузок соотношение 399 > 343 > 361 не удовлетворяется, а для наименьших нагрузок 399 > 384,8 > 361 удовлетворяется.
Вывод. В режиме наибольших нагрузок потеря напряжения настолько велика, что напряжение у потребителя выходит за пределы зоны желаемых напряжений (снижается) и не удовлетворяет потребителя.
Этот пример можно проиллюстрировать графически потенциальной диаграммой рис. 3. При отсутствии тока напряжение у потребителя будет численно равно напряжению на питающих шинах. Так как потеря напряжения пропорциональна длине питающей линии, то напряжение при наличии нагрузки изменяется вдоль линии по наклонной прямой от величины U1 = 400 В до величины U2 макс = 343 В и величины U2 мин = 384,8 В.
Как видно из диаграммы, напряжение в режиме наибольшей нагрузки вышло из зоны желаемых напряжений (точка Б графика).
Таким образом, даже при постоянной величине напряжения на шинах питающего трансформатора, резкие изменения нагрузки могут создать у приемника недопустимую величину напряжения.
Кроме того, может оказаться, что при изменениях нагрузки в сети от наибольшей нагрузки в дневное время до наименьшей нагрузки в ночное время сама энергетическая система не сможет обеспечить должной величины напряжения на выводах трансформатора. В обоих этих случаях следует прибегнуть к средствам местного, главным образом, ступенчатого изменения напряжения.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
§ 15. Передача электрической энергии по проводам
Потеря напряжения в проводах линии. Передача электрической энергии от источника I (рис. 33) к приемнику 2 происходит по проводам, образующим электрическую линию. При передаче энергии возникает потеря напряжения в проводах линии
где Rл, — сопротивление проводов линии.
В результате этого напряжение U2 в конце электрической линии оказывается меньше напряжения U1 в начале линии. Потеря напряжения в проводах линии ?Uл не является постоянной величиной, она колеблется в зависимости от силы тока нагрузки от нуля (при I = 0) до наибольшего значения (при максимальной нагрузке). Кроме того, она зависит от сопротивления Rл проводов линии,
Рис. 33. Схема передачи электрической энергии от источника к приемнику
т. е. от их удельной проводимости ?, площади поперечного сечения s и длины линии lл.
На электрифицированных железных дорогах одним из проводов, соединяющих источник питания — тяговую подстанцию с потребителем — электровозом, является контактный провод, а другим — рельсы. Поэтому под потерей напряжения в проводах ?Uл этом случае понимается суммарная потеря напряжения в контактной сети и рельсах. Потеря напряжения в линии увеличивается по мере удаления электровоза от тяговой подстанции, в соответствии с этим уменьшается и напряжение на его токоприемнике.
Потери мощности в линии и ее к. п. д. При прохождении по линии тока I часть мощности Р1, поступающей от источника, теряется в линии вызывая нагрев проводов, эти потери мощности
Следовательно, приемник электрической энергии включенный на конце линии, будет получать меньшую мощность
При увеличении тока I возрастают потери мощности в проводах линии ?Pл и уменьшаются к.п.д. линии и напряжение U2, подаваемое на нагрузку.
Практически электрическую энергию передают по проводам при ? = 0,9- 0,95, при этом сопротивление проводов линии составляет 5—10 % сопротивления нагрузки и потери энергии в них не превышают 5—10 % передаваемой мощности.
Рассмотрим теперь, как зависят потери мощности в линии и ее к. п. д. от напряжения U2, при котором осуществляется передача электроэнергии. Потери мощности в проводах линии
?Pл = I 2 Rл = P2 2 /U2 2 * 2?lл/sл (39)
Следовательно, чем больше передаваемая мощность Р2 и расстояние lл, на которое она передается, тем больше потери мощности и энергии в проводах; чем больше площадь сечения проводов Sл и напряжение U2 в линии передачи, тем меньше эти потери, поэтому выгоднее передавать электрическую энергию при более высоких напряжениях.
Относительная потеря напряжения в линии, %,
Заменяя в этой формуле ?Uл = IRл = I2?lл/Sл и I = P2/U2, получим, что поперечное сечение проводов линии
Из формулы (39′) следует:
1) чем больше передаваемая мощность и чем на большее расстояние она передается, тем больше должно быть поперечное сечение проводов линии;
2) увеличение напряжения в линии позволяет в значительной
степени уменьшить сечение проводов линии и снизить потери мощности в ней.
При передаче электрической энергии на дальнее расстояние широко используются выгоды, которые дает повышение напряжения. Чем большую мощность требуется передать и чем больше расстояние, на которое она передается, тем более высокое напряжение применяют в линиях электропередачи. Например, при передаче энергии от мощных электростанций (Куйбышевской, Волгоградской и др.) на расстояние 800—1000 км используют напряжение 500—750 кВ; при передаче энергии на расстояние 100—200 км— 110—220 кВ; при передаче сравнительно небольшого количества энергии на расстояние нескольких километров или десятков километров— 35 кВ. В электрических установках небольшой мощности при расположении электрических приемников вблизи от источников
питания применяют напряжения 110, 220, 440 В (при постоянном
токе) и 127, 220, 380, 660 В (при переменном токе).
При электрической тяге, чем больше напряжение в контактном проводе, тем меньшую площадь сечения он будет иметь и тем на большем расстоянии могут быть расположены источники питания контактной сети (тяговые подстанции). Например, для снабжения электрической энергией трамвая, двигатели которого имеют сравнительно небольшую мощность, а контактная сеть — небольшую протяженность, используют напряжение 600 В, а на магистральных железных дорогах, электрифицированных на постоянном токе (где эксплуатируются мощные локомотивы),— 3300 В. Электрификация железных дорог на переменном токе дает возможность поднять напряжение в контактной сети до 27500 В что позволяет значительно уменьшить площадь сечения проводов контактной сети и увеличить расстояние между тяговыми подстанциями по сравнению с дорогами постоянного тока. В последнее время ведутся работы по дальнейшему повышению напряжения в контактной сети на дорогах переменного тока до 2*25 кВ.