Обрыв нуля откуда в розетке 380 вольт?

Откуда в розетке 380в при обрыве нуля — наглядно, доступно, без формул.

Наверняка у каждого из вас, хотя бы раз в жизни сгорали бытовые приборы от перенапряжения. При этом многие слышали, что подобное не редко случается из-за обрыва ноля.

Давайте наглядно без формул, векторных диаграмм, смещений нулевых точек и т.п., с точки зрения обывателя попытаемся разобраться, каким же образом напряжение 380в, вместо привычных 220в, может оказаться в ваших розетках.

Ведь действительно возникает логичный вопрос, как это так, оборвался или отгорел один из проводов, а напряжение ни то что не пропадает, а становится даже больше.

Понимание этого процесса будет полезно каждому потребителю, дабы потом не возникало вопросов, зачем электрики пытаются «всунуть» в электрощиток, непонятные реле, стоимостью несколько тысяч рублей.

Чтобы доступно разобраться в сути этого явления, давайте вспомним разницу между последовательной и параллельной схемой подключения электроприемников.

При параллельном подключении, фазный и нулевой проводники одновременно приходят ко всем потребителям в цепи. Нарисуем такую схемку, где этими потребителями будут обыкновенные лампочки накаливания.

На входе напряжение составляет 220в. При таком подключении, на каждой лампочке напряжение будет одинаковым, и при достаточном сечении проводников и малой нагрузке, не будет сильно отличаться от вводного.

При этом отключение или включение каждой лампочки по очередности, не сильно скажется на его значениях. Именно по такой схеме и подключены все розетки в ваших квартирах.

Однако если напряжение будет одинаковым, ток в цепи будет разным. Общее его значение складывается из суммы токов проходящих через лампочку №1 и №2.

Вы можете включать и более мощные приборы (лампы 200Вт, чайник), и все будет прекрасно работать.

Схема последовательного подключения несет в себе уже существенные изменения. Здесь питающий проводник (это может быть фаза или ноль), сначала приходит на первую лампочку, а далее от нее уходит на следующую.

Только после этого он возвращается на вводной автомат или в общую сеть.

Не важно количество токоприемников, их может быть 2,3,4 и более. Главное, чтобы они были строго подключены один после другого.

Что же изменится, если вы включите последовательно две лампы по 100Вт? А случится то, что напряжение на них упадет примерно в два раза.

При этом общее вводное напряжение будет складываться из суммы падений напряжений на лампе №1 и лампе №2. То есть, 110в на одной и 110в на другой. Кстати, такой казалось бы недостаток, можно очень хитро использовать несколькими способами.

Напомню, что в параллельной схеме, U везде было одинаковым, не важно в какой точке. Здесь же одинаковым будет ток, при том в любой части электрической цепи I=I1=I2.

Однако такая ситуация с равномерным падением напряжения, будет наблюдаться только в том случае, если все эл.приемники будут одинаковой мощности. Стоит вместо одной 100Вт лампы вкрутить 200 ваттную, и вы сразу же увидите разницу.

На лампочке 100Вт будет напряжение 146В и она будет гореть довольно ярко. В то же время более мощная 200 ваттная будет еле светиться.

Связано это с тем, что падение напряжения напрямую зависит от сопротивления потребителя. На более мощных приборах сопротивление маленькое.

Вот примерные данные по стандартным лампочкам, предназначенным для работы в сети 220В:

Обрыв нуля в трехфазной и однофазной сети

Лампочка при обрыве нуля может гореть ярко, но недолго!

Иногда обывателям приходится слышать эти страшные слова – “Обрыв нуля”. Для простого человека понятного мало, но связано это всегда с очень неприятными последствиями – поражение электрическим током, сгоревшая техника, и даже пожар в квартире.

В этой статье я подробно рассмотрю, что такое обрыв нуля, как он происходит, какие последствия от него могут быть. И конечно, будет рассмотрена защита от обрыва нуля в трехфазной и однофазной сети.

Для тех, кто не очень понимает, чем трехфазная сеть отличается от однофазной, очень рекомендую ознакомиться с этой статьёй.

Также, при изучении этой статьи важно знать о том, как формируются системы заземления.

Где бывает обрыв нуля

Принципиально важно, что обрыв нуля может быть в трехфазной, а может быть в однофазной сетях.

Там происходят совершенно разные процессы, подробно расскажу ниже. Если коротко, что при этом происходит:

При обрыве нуля в трехфазной сети появляется перекос фаз, что может привести к тому, что напряжение в квартирной розетке возрастёт до 380 В! Для человека, если правильно выполнено заземление, такая авария не опасна. А вот для наших электроприборов – последствия могут быть очень печальными! А также и для нашего жилища, поскольку может произойти пожар.

Местом обрыва нуля может быть этажный щиток, тогда в зоне риска находятся только квартиры на одной лестничной площадке. А может – вводное распределительное устройство (РУ) многоэтажного дома. Например, такое:

Вводное распределительное устройство (РУ) в подвале многоэтажного дома – в плохом состоянии

При обрыве нуля в однофазной сети последствия не такие печальные – напряжение в розетке будет нулевым, и электроприборы просто не будут работать. Однако вся электросеть (а при неправильно выполненном заземлении, и корпуса электроприборов!) будет находиться под потенциалом 220 В!

Последствия обрыва нуля в трехфазной сети

Расскажу случаи из жизни.

  1. Электрики ремонтировали ввод в подъезд. И во время ремонта на несколько секунд был отключен рабочий ноль. Произошло очень неприятное: вернувшись домой вечером, люди обнаружили, что у них погорели телевизоры, холодильники, зарядки, и т.п. – то, что у нас постоянно включено в розетки. Хорошо, что ещё не произошел пожар.
  2. Пришёл по вызову, жалоба – плавает напряжение. Меряю напряжение (всё выключено) – почти 300 вольт. Затем при включении лампы накаливания напряжение падает до 70В… Оказалось, в этажном щитке выгорел болт, на который приходит ноль. Произошел обрыв нуля, перекос фаз, напряжения пошли вразнос. Заменил болт, восстановил контакт, напряжение нормализовалось.

Болт нуля. Ржавый, периодически не контачит. Если его менять без отключения, 100% в подъезде погорит техника!

Статья, как я менял там электрощиток – тут.

  • Меня вызывали в рекламно-издательскую фирму. По предварительным оценкам, ущерб более 100 тыс.руб., а всё из-за плохого контакта на нулевой шине:
  • Отгорание нуля от нулевой шины

    Нулевой провод отгорел от второго болта. Видно, как он отвалился под натяжением. Прежде, чем отвалиться, он ПОЧТИ переплавил изоляцию фазных проводов (вертикальные, красный и белый).

    Сервер ещё не включали, возможно, интеллектуальный ущерб будет больше…

    На месте этой трагедии я установил трехфазное реле напряжения Барьер, читайте статью по ссылке.

    Как видно, такие проблемы происходят из-за неправильных действий “электриков” либо из-за самопроизвольного обрыва (отгорания) нулевого провода в старом жилом фонде.

    В этой статье подробно расскажу, почему такое бывает и как с этим бороться.

    Формирование однофазной и трехфазной сетей и обрыв нуля

    Как известно, мощные потребители (в данном случае – многоквартирные дома) питаются от трехфазной сети, в которой есть три фазы и ноль. Про эту систему я уже писал подробно в статье про отличия трехфазного питания от однофазного, вот картинка оттуда:

    Напряжения в трёхфазной системе

    Рассмотрим этот вопрос ещё раз, только с другой стороны.

    Вот как выглядит упрощенно схема подвода питания в этажный щиток:

    Система питания, без обрыва нуля. Резисторами обозначены условно три квартиры.

    Фазные провода L1, L2, L3, на которых присутствует напряжение 220В по отношению к нейтральному проводу N, обозначены красным цветом, поскольку они представляют опасность. Заземление РЕ показано внизу, его провод соединяется в распределительном устройстве на вводе в здание с нейтралью.

    Подробнее – ещё раз призываю ознакомиться с моей статьёй про системы заземления, ссылка в начале.

    К чему приводит отгорание нуля в трехфазной сети

    Что изменится, если произойдёт обрыв нулевого провода N ДО места соединения нулевых проводов в одной точке? Будет обрыв нуля в трехфазной сети:

    Обрыв нуля в трехфазной сети

    Если смотреть по схеме, правее места обрыва напряжение теперь будет не нулевым, а “гулять” в произвольных пределах.

    Что будет, если ноль отсоединить (случайно или намеренно)? Какие напряжения будут подаваться потребителям вместо 220В? Это как повезёт.

    Картинка в другом виде, возможно, так будет легче понять:

    Перекос фаз в результате обрыва нуля.

    Потребители условно показаны в виде сопротивлений R1, R2, R3. Напряжения, указанные в предыдущем рисунке, как

    220B, обозначены как

    0…380B. Объясняю, почему.

    Итак, что будет, если ноль пропадёт (крест в нижнем правом углу)? В идеальном случае, когда электрическое сопротивление всех потребителей одинаково, ничего вообще не изменится. То есть, перекоса фаз не будет. Так происходит в случае включения трехфазных потребителей, например, электродвигателей или мощных калориферов.

    Но в реале так никогда не бывает. В одной квартире никого нет, и включен только телевизор в дежурном режиме и зарядка телефона. А соседи по площадке устроили стирку, включили сплит-систему и электрический чайник. И вот -БАХ!- отгорает ноль.

    Начинается перекос фаз. А насколько он зверский, зависит от реальной ситуации.

    У соседей, которые дома, чайник перестанет греть, стиралка и сплит потухнут, напряжение уменьшится до 50…100В. Поскольку “сопротивление” этих соседей гораздо ниже, чем тех у тех, которых нет дома. И вот, эти люди спокойно работают на работе, а в это время в пустой квартире у них дымятся телевизор и китайская зарядка. Потому, что напряжение в розетках подскочило до 300…350В.

    Это реальные факты и цифры, такое иногда бывает, состояние электрических щитков на лестничных площадках часто бывает аварийным. Даже, когда в доме проводится капитальный ремонт, щитки не трогают, поскольку менять электрику гораздо сложнее, чем покрасить дом и вставить новые окна.

    Расследовать такое возгорание надо не с вызова экстрасенсов (мало ли, полтергейст со спичками играется;) ), а с вызова электрика.

    Обрыв нуля в однофазной сети

    Тут картина будет следующей:

    Обрыв нуля в однофазной сети

    Для нагрузки, которая работает на других фазах, вообще ничего не изменится. Это всё равно, как если в своей квартире выключить вводные автоматы – соседям будет по барабану.

    Но если обрыв произошел, например, в щитке, то вся квартира, в том числе и оборванный конец нулевого провода, окажется под напряжением 220В!

    Обрыв (отгорание) бывает вот из-за таких ржавых болтов, как вверху этого фото:

    Плохой ноль. Пропадание нуля в квартире

    Повторюсь – если заземление сделано правильно, либо его вообще нет – эта авария ничем не опасна. Ну и, конечно, не нужно трогать провода, не дожидаясь электрика – все они под смертельным потенциалом!

    Хорошо, кто виноват – мы поняли. Что делать?

    Как защититься от обрыва нуля?

    Самая лучшая защита от обрыва нуля в трехфазной сети – это реле напряжения, о котором я писал на блоге не раз. Вот две мои основные статьи – Про реле напряжения Барьер и реле напряжения ЕвроАвтоматика ФиФ.

    Из-за своей основной функции это реле называют также Реле обрыва нуля.

    Другой вариант – применение стабилизатора напряжения. В нем обязательно должна быть защита от пониженного и повышенного (до 380В) входного напряжения. А при невозможности стабилизировать напряжение он должен отключать квартиру, но оставаться исправным.

    Лучший вариант для защиты от обрыва нуля и вообще при нестабильном напряжении – использовать реле напряжения, а вслед за ним – стабилизатор.

    Как вариант дополнительной защиты при обрыве нуля может помочь УЗО (или диф.автомат). Только не так всё просто, подробности – в видео:

    На сегодня всё, подключайтесь к обсуждению, задавайте вопросы в комментариях!

    Обрыв нуля откуда в розетке 380 вольт?

    Всем привет! В данной статье хочу наглядно на рисунках показать в какой ситуации в обычных домашних розетках может появиться 380В и более вместо стандартных 220В. По новому ГОСТу даже 400В. Это очень высокое напряжение, от которого выходит из строя вся электронная бытовая техника, горят компрессоры холодильников, моторы и т.д. Мало того, что сама техника перегорает, так она еще может загореться и привести к пожару. Это очень опасно и поэтому про данную аварийную ситуацию нужно знать и нужно знать как от нее защититься.

    Вот посмотрите ниже на фото какие напряжения были на разных фазах в одном коттеджном поселке Московской области. На фазе L1 было 391В, на фазе L2 было 319В, на фазе L3 было 426В. Данные устройства имеют некоторую погрешность в измерениях, но я думаю в такой ситуации плюс минус один вольт роли уже не играет. У людей сгорело очень много бытовой техники и теперь они пытаются найти правду и справедливость. А в доме, где стоят данные приборы, даже ничего и не заметили. Как мы видим высокое напряжение в нашей действительности это реальность и поэтому давайте вместе разберемся откуда в розетке может появиться 380В?

    Ниже на рисунке я схематично изобразил дом. Представим, что это типичная многоэтажка. У них обычно в подвале находится вводной электрощит — ВРУ. От подстанции к нему всегда приходит 3-хфазное питание. По стоякам от ВРУ и до последнего этажа поднимаются четыре или пять жил, то есть все три фазы. Если пять жил, то это три фазы, нулевой рабочий и нулевой защитный проводники. Это современная система заземления. Ее применяют сейчас при строительстве новых домов. Если дом старый, то там скорее всего в шахте можно найти только четыре жилы — это три фазы и PEN проводник. Это старая система заземления. На своих рисунках я изобразил пятипроводную систему.

    Итак, на каждом этаже присутствуют все три фазы. Но в квартиры заходит однофазное питание. Если на лестничной площадке три квартиры, то одна квартира подключена к фазе L1, вторая к L2 и третья к L3. Это делается, чтобы распределение нагрузки по фазам было более менее равномерным. Получается, что у квартир разные фазы, но общие нулевой рабочий (ноль) и нулевой защитный (заземление) проводники. В разных квартирах жильцы занимаются разными делами и включают разное количество потребителей. Поэтому нагрузка по фазам все равно не равномерная.

    Теперь вспомним какие бывают соединения в электрике и как они влияют на ток и напряжение.

    Все домашние потребители подключаются к сети параллельно. То есть к каждой розетке приходит свои фаза и ноль. При таком подключении в каждом потребителе будет одинаковое напряжение. По современному ГОСТу оно должно быть 230В. Поэтому в нормальной ситуации в каждой розетке должно быть 230В. Это правильно и все работает исправно. При параллельном подключении общий ток складывается из токов каждого участка цепи.

    Последовательное соединение — это когда от источника питания пришел провод к потребителю на один контакт. Далее со второго контакта провод ушел на следующий потребитель на первый контакт. С его второго контакта — на третий потребитель и т.д. При последовательном соединении во всей цепи ток будет одинаковый у каждого потребителя, но напряжение будет разным. Общее напряжение всей цепи будет складываться из напряжений на каждом потребителе. Если потребители имеют разную мощность, то и напряжение на них будет разное. Последовательно розетки и потребители нельзя подключать. Так они исправно работать не смогут. Их нужно подключать только параллельно.

    Ниже на рисунке все это наглядно показано.

    Теперь пару слов о линейном и межфазном напряжении. Между любым фазным и нулевым рабочим проводниками напряжение (линейное) составляет 230В. Напряжение между разными фазами (межфазное) составляет 400В. Ниже также все наглядно показано. Думаю все понятно. Это же так легко)))

    Так как в квартиры заходит одна из фаз и ноль, то во всех розетках присутствует 230В.

    Когда все надежно подключено, то все работает в штатном режиме. Вот так «течет» ток в одной квартире. От источника питания к розетке электроны бегут по фазному проводнику. Далее они там стирают, варят, греют, светят и т.д. Поработав, уставшие электроны по нулевому рабочему проводнику возвращаются домой в источник питания. Не знаю успевают ли они там отдохнуть, но они снова по фазному проводнику бегут на работу. И так по кругу до бесконечности прямо как взрослые люди ))) Данный путь на рисунке я выделил красными жирными стрелками.

    Так выглядит другая квартира.

    Так вот, если со временем какой-нибудь контакт подключения проводника в ВРУ ослабевает и потом совсем пропадает, то это означает, что цепь движения тока нарушается. Если отгорит фазный проводник, то пропадет электричество в тех квартирах, которые подключены к данной фазе. Это как бы пол беды и не так страшно. Дома ничего опасного не произойдет и только не будет работать домашняя техника. Потом приедут местные электрики, прикрутят фазу обратно или заменят вставку и все заработает по прежнему. Но на долго ли.

    Так откуда же в розетках может появиться 380В? Вот откуда. У всех потребителей один общий нулевой рабочий проводник (ноль). Вот если отгорит он, то подключение всех розеток станет последовательным. Смотрите следующий рисунок. Ноль оборван и по нему нет обратного пути к источнику тока, но есть путь по нулевому рабочему проводнику к другим розеткам, подключенным к другим фазам. В итоге получается, что потребители уже подключены последовательно и между разными фазами. А мы уже знаем, что между разными фазами 400В. Так как каждый потребитель имеет свою мощность, например, телевизор 300Вт, а духовой шкаф 2000Вт, то соответственно на них будет падать напряжение обратно пропорционально их мощности. На рисунке для наглядности я привел значения мощности 500Вт в одной квартире и 3500Вт в другой. Малыш извини, но тебе сегодня не повезло ))) Суммарное напряжение будет 400В, так как потребители подключены между разными фазами. А вот падение напряжения будет у каждого свое. Чем меньше мощность, тем выше будет напряжение и наоборот. Поэтому в квартире, где были подключены потребители суммарной мощностью 3500Вт, напряжение упадет до 50В. В другой квартире, где было включено мало потребителей мощностью 500Вт напряжение подскачет до 350В. А это уже очень опасное напряжение, которое выводит бытовую технику из строя.

    Для большей наглядности описываемой ситуации я убрал лишнее. Вот так должно быть более понятнее. Наверное.

    Вот отсюда в розетке и появляется 380В. Вот вам один из реальных примеров данной ситуации. К сожалению, они случаются довольно часто. Мало того, что люди несут материальный ущерб, так потом еще нужно много сил и энергии, чтобы что-то доказать.

    Для защиты от такой ситуации можно использовать разные защитные устройства, например реле напряжения УЗМ-51М, УЗМ-50Ц, РН-106 или расцепители максимального напряжения Legrand POP (артикул 406286), IMSU от Schneider Electric и т.д.

    Берегите себя и отноститесь к электричеству с особым вниманием.

    Как в домашней розетке может появиться 380 Вольт

    Доводилось ли вам слышать истории электриков о том, что в подъезде вашего дома произошел обрыв нуля, что в одном из домов разом перегорели лампочки, телевизоры, микроволновые печи, а также прочие дорогостоящие электроприборы, которым «посчастливилось» попасть под напряжение 380 Вольт? От обрыва или отгорания нулевого проводника не застрахован никто, поэтому разумно будет знать природу этого явления, причины возникновения нештатных ситуаций, а также способы защиты электроприборов.

    Почему в розетке появляется 380В

    Чтобы ответить на этот вопрос, давайте коротко рассмотрим систему электроснабжения многоквартирного дома. По сути, все электричество, которым обеспечивается дом, имеет 3 фазы: фаза A, фаза B и, естественно, фаза C. Величина действующего напряжения между любой парой фаз – 380 Вольт. По схеме соединения обмоток питающего трансформатора все фазы сводятся к одной точке, которая называется нулем. Величина действующего напряжения между любой фазой и нулем – 220 Вольт.

    В любом многоквартирном доме питание производится путем равномерного распределения трехфазной линии по всем квартирам в подъезде. К примеру, если в подъезде имеется 60 квартир, то первая 20-ка квартир запитана от фазы A, вторая – от фазы B, третья – от фазы C. Все распределение энергии происходит сбалансировано и очень равномерно. Если бы все люди были роботами, включающими и выключающими электроприборы так, чтобы нагрузка по всем трем фазам была бы идентичной, то наличие нулевого проводника и не требовалось бы в принципе. Это легко проверить, проделав простой школьный опыт с тремя 40 Вт лампочками, включенными по схеме звезда в трехфазную сеть. В такой идеализированной цепи потребления весь ток от 3 фаз, сходящийся в нулевой точке, взаимно компенсируется, что делает возможным либо использование нулевого провода с малым сечением, либо отказ от такового. По сути, если нагрузка одинакова по трем фазам, то нулевой провод и не нужен. В реальной жизни такого, естественно, не бывает. К примеру, в одной квартире подъезда может гореть одна лампочка, во второй – работать телевизор, в третьей – вообще все выключено. Именно такое неравномерное распределение нагрузки по фазным цепям приводит к формированию некомпенсированного тока, который должен проходить через нулевой проводник. Если же нулевой проводник отгорел, оборвался, то в одной из квартир, как правило, с наименьшим электропотреблением, в розетках появляются не привычные 220 Вольт, а «убивающие» всю домашнюю электронику 380 Вольт. Напротив, в квартирах, где электропотребление было максимальным, происходит просадка напряжения. Естественно, винить соседей за это не стоит, ведь они не обязаны согласовывать с вами, когда включать электроприборы, а когда нет. Чтобы такого неприятного исхода не происходило, необходимо, во-первых, проверять надежность электрического контакта нулевого проводника, а во-вторых, устанавливать индивидуальное защитное оборудование, осуществляющее быстрое отключение нагрузки в вашем доме, если напряжение поднимется выше 270 Вольт. Практика показывает, что даже банальный стабилизатор напряжения, установленный на компьютер и телевизор, способен уберечь вас от дорогостоящего ремонта.

    Как и где обрывается нулевой проводник

    Основных причин, по которым происходит отгорание или обрыв нулевого проводника, две: 1– недостаточный гальванический контакт нулевого проводника в местах соединения, 2– чрезмерный некомпенсированный ток, идущий по нулевой линии. Разномастные импульсные всплески в сети, идущие от компьютеров с дешевыми блоками питания, резкие включения мощных нагрузок только на одну из фаз могут привести к отгоранию нулевого провода. Обрыв проводника происходит, как правило, в слабых местах – в плохо пропаянных контактах, скрутках, не советующих ПУЭ. Как говорится, где тонко, там и рвется.

    Как защитить наши электроприборы

    Помните, что для сложной электроники опасны как высокие скачки напряжения (выше 270 Вольт), так и просадки (ниже 120 Вольт). Как правило, при несоблюдении действующего напряжения в сети ломаются импульсные блоки питания. Самый идеальный вариант защиты заключается в покупке специального реле контроля напряжения. Такое реле молниеносно отключает всю домашнюю нагрузку в те моменты, когда значение действующего напряжения уходит за допустимые пределы.

    Чем опасен обрыв нулевого провода в электрической сети?

    Даже те, кто не имеет электротехнического образования, наверняка слышали о такой аварийной ситуации, как перекос фаз. В некоторых предыдущих публикациях мы уже упоминали, чем грозит обрыв нуля, и кратко упоминали о способах защиты от несимметрии фазных напряжений. Сегодня мы более подробно рассмотрим данную тему.

    Что такое обрыв нуля?

    Для полноценного ответа на этот вопрос необходимо привести примеры штатной работы трехфазной схемы ввода электроснабжения. В качестве примера приведем упрощенный вариант с вводом для этажного распределительного щита.

    Схема 1. Штатная работа системы

    Как видно из рисунка, каждая из квартир на этаже запитана от отдельной фазы (L1 – L3) и общего нуля. Что формирует в бытовой сети каждой квартиры фазное напряжение 220 вольт (L1N=L2N=L3=220 В.). В данном случае используется схема питания TN-C-S, где задействована шина заземления PE, соединяемая в РУ здания с нулем. Приведенная система сбалансированная, поскольку ток нагрузки в фазных проводах суммируется через нулевую линию, что снижает вероятность перекоса фазных напряжений.

    Заметим, что полностью исключить данное явление довольно сложно, поскольку сопротивление нагрузок на каждой фазе может различаться. К примеру, в квартире_1 включен кондиционер и стиральная машина, в квартире_2 хозяин запустил бойлер и электропечку, а в квартире_3 жильцы отсутствуют и все бытовые приборы отключены от сети. По итогу, в трехфазной системе питания возникнет несимметрия напряжений.

    Теперь рассмотрим работу сети в нештатном режиме, когда происходит отгорание нуля.

    Что происходит в электросети при обрыве нуля?

    Рассмотрим отдельно, изменение режима работы трехфазной сети при обрыве магистрального нуля и как поведет себя однофазная электрическая проводка, если отгорание нулевого проводника произойдет на вводе.

    Отгорание нуля в трехфазной сети

    Внесем изменения в рисунок 1, вызванные аварией, а именно отключением нуля .

    Оборвался нулевой магистральный проводник

    В данном случае обрыв общего нулевого провода приведет к тому, что движение электрического тока по нему прекратиться. В результате все квартиры R1-R3 будут запитаны по типу подключения «звезда без нулевой магистрали». Другими словами, при обрыве нуля на каждую квартиру будет поступать не фазное, а линейное напряжение.

    Контур из квартир 1 и 2

    Для примера предлагаем рассмотреть, как сложится ситуация в квартирах 1 и 2. Нагрузка электрических приборов суммируется в данном контуре при прохождении через него тока I12. Соответственно, уровень напряжения для квартир установится в зависимости от нагрузки подключенных к сети приборов. То есть: U1 = I12*R1, а U2 = I12* R2. Из этого следует, что суммарная величина силы тока составит I12 = U12 / (R1+R2) :

    Обратим внимание, что суммарное напряжение контура будет равно линейному в данной электросети, то есть U12 = 380 вольт. Но при этом показатели U1 и U2 могут варьироваться в диапазоне 0-380 вольт и, естественно, существенно отличаться друг от друга. На данные значения может влиять как нагрузка подключенных приборов в каждой из квартир, так и ее активная и пассивная составляющая.

    В результате если произойдут проблемы с нейтралью трансформатора (нулем источника), велика вероятность выхода из строя подключенных к сети приборов. Причина – повышение уровня напряжения в сети.

    Обрыв нуля в однофазной сети

    В данной ситуации последствия будут не такими печальными, как в описанном выше случае, но, тем не менее, если отгорает вводный ноль в системе TN-C, это может представлять серьезную опасность для жизни человека.

    Отгорание нуля в схеме однофазного потребителя

    Для однофазных нагрузок обрыв нуля будет аналогичен отключению напряжения, за исключением того фактора, что на фазном проводе останется потенциал, представляющий опасность для жизни. Причем, он также проявится там, где был ранее защитный ноль в контактах розеток. Если корпуса электроприборов заземлялись рабочим нулем, то весьма велика вероятность негативных последствий. В системах TN-C-S фактор риска существенно сокращается, за счет использования PEN проводника.

    Как защититься?

    Узнав об опасности, представляемой потерей нуля, предлагаем рассмотреть варианты защиты от данного явления:

    • Начать необходимо с грамотного монтажа электропроводки. Если для питания объекта планируется задействовать трехфазную схему электроснабжения, то ее расчет должен быть произведен таким образом, чтобы минимизировать вероятность перекоса фаз. То есть, необходимо планомерно распределить нагрузку на каждую линию.
    • Следует задействовать в управлении сетью приборы, выравнивающие нагрузку на каждую из фаз. Причем, в идеале, эта работа должна осуществляться без привлечения операторов, то есть, выполняться автоматически при обрыве нуля.
    • Должна иметься возможность оперативного изменения схемы подключения потребителей. Это позволяет внести корректировки, если на этапе проектирования не была должным образом учтена нагрузка на каждый участок или увеличилась мощность потребления в связи с вводом новых объектов. То есть, при возникновении критической ситуации должна иметься возможность изменения мощности. В качестве примера можно привести вариант, когда многоквартирный дом переводится на линию с большей нагрузкой для «разбавления» перекоса фаз, возникающего при обрыве нуля.

    В приведенных выше вариантах мы рассматривали защиту от перекосов в глобальных масштабах, конечный потребитель может обеспечить должный уровень защиты значительно проще. Для этого достаточно установить реле контроля напряжения, в котором указать допустимый минимальный и максимальный уровень. Как правило, это ±10% от нормы.

    Подведем итоги

    Безусловно, что вероятности аварий носят случайный характер, максимум, что можно сделать в таких ситуациях, — принять необходимые меры для обеспечения защиты. Но помимо этого не будет лишним вовремя определить аварийную ситуацию по характерным признакам. В первую очередь отгорание нулевого магистрального провода приводит к перенапряжению сети. Обнаружив первые признаки этого явления, следует отключить все электроприборы.

    Сделать это оперативно и самостоятельно практически нереально. Временной промежуток для этого слишком коротким, поэтому следует установить на электрическом щитке специальные приборы, реагирующие на обрыв нуля. Как только напряжение выйдет за установленные пределы, реле контроля напряжения произведет защитное отключение.

    Полностью доверять системе защиты не стоит. Может случиться так, что при наличии характерных признаков перепадов напряжения, отключение питания не произойдет. Поэтому имеет смысл перечислить наиболее вероятные проявления для данного явления:

    • Мерцание ламп накаливания. Они наиболее чувствительны к перепаду уровня напряжения, возникающего при обрыве нуля. Энергосберегающие осветительные приборы и светодиодные лампы не настолько реагируют на изменения.
    • Электронные приборы, имеющие встроенную защиту, как правило, отключаются от сети питания. Или не запускаются. Такие действия предусмотрены реакцией защиты импульсных БП на броски напряжения. Характерно, что такая реакция может сработать раньше, чем реле напряжения. Но это, во многом зависит от производителя и схемы реализации защиты электросетей, а также надежности электрического соединения.
    • Еще один характерный признак – повышение температуры выключателя. Даже если Вы не обратили внимания на мерцание ламп, то данное проявление должно вызвать опасения.
    • Искрение, при попытке подключения электроприбора, может говорить об обрыве нуля на вводе однофазного потребителя. Даже, если оно вызвано другим фактором, а не обрывом нуля, это очень нехороший признак.
    • Самопроизвольные срабатывания вводных автоматов, также могут указывать на перенапряжение. Такая реакция на обрыв нуля характерна при включении электронагревательных приборов, например электропечи, бойлера, чайника и т.д.
    • Характерные звуки во вводном электрическом щите также могут указывать на перепады напряжения. В такой ситуации рекомендуется отключить ввод питания и дождаться приезда аварийной бригады. Велика вероятность, что авария обрыва нуля имела место в электросети поставщика.
    • Обязательно установите на вводе электрической сети реле напряжения. В идеале желательно продублировать данную систему стабилизатором напряжения для дома или квартиры. Такое устройство, работая в паре с реле, позволит поддерживать заданный уровень напряжения, не отключая питание.

    Собственно, только многоуровневая защита может обеспечить максимальную безопасность.

    Видео по теме статьи