Откуда в розетке 380 вольт?

Здравствуйте уважаемые посетителя сайта «Помощь электрикам». Сегодня я бы хотел…

Откуда в розетке 380 вольт?

Обрыв нуля. Почему в розетке будет напряжение 380В

Здравствуйте уважаемые посетителя сайта «Помощь электрикам». Сегодня я бы хотел поговорить о такой распространенной неисправности как обрыв нуля в трехфазной сети и том как в однофазной розетке может оказаться 380 В. Конечно неосведомленные люди сразу начинают улыбаться когда слышать такое. Как такое может быть? Обрывается провод а напряжение не то что бы не падает а оно вообще начинает расти. Но обо всем по порядку.

Здравствуйте уважаемые посетителя сайта «Помощь электрикам». Сегодня я бы хотел поговорить о такой распространенной неисправности как обрыв нуля в трехфазной сети и том как в однофазной розетке может оказаться 380 В. Конечно неосведомленные люди сразу начинают улыбаться когда слышать такое. Как такое может быть? Обрывается провод а напряжение не то что бы не падает а оно вообще начинает расти. Но обо всем по порядку.

Планируете ремонт или вам просто необходимо произвести обработку металла? Покупайте качественные и недорогие шлифовальной лентой на сайте: https://shop.voleks.com/3m/lenty-proizvodstvo

Чтобы разобраться в сути данного явления, перейдем к схеме по электротехнике. Рассмотрим два типа подключения электроприемников- параллельное и последовательное.

На рисунке 1 приведен пример параллельного соединения. То есть у нас нулевой проводник приходит на все потребители и фазный приходит на все потребители. Добавим двух потребителей. Две 60 Вт лампочки.

Напряжение сети 200В. Включаем автоматический выключатель. Лампочки загораются и мы видим что при параллельном соединении напряжение на потребителях будет одинаковое. Что на первой лампочке 200 В, что на второй лампочке 200В. Причем даже в отключенном состоянии лампочек напряжение не изменится. Только ток в цепи будет разный, но очень малый.

Запишем данный процесс формулами:

U = U 1= U 2 I = I 1 + I 2

Даже если мы заменим лампочки на другие потребители например чайник 1000 Вт и лампочку 100 Вт напряжение останется примерно на одном уровне 199-201 В.

Теперь мы делаем вывод что все розетки в квартирах подключаются именно параллельным соединением. И все однофазные квартиры между собой так же подключаются.

Данное подключение представлено на рисунке 2

Питающий проводник сначала приходит на один электроприемник, от этого электроприемника провод идет к следующему, и от него возвращается непосредственно к питанию.

Так же напряжение сети 200 В. Подключаем два потребителя ( две лампочки) мощностью 95 Вт. Мы видим что общее напряжение будет складываться из двух напряжений электроприемников. U = U 1 + U 2

Ток в цепи не изменится. Будет везде одинаковый. I = I 1 = I 2

Но так будет не всегда.Унас на данный момент одинаковые по мощности электроприемники. Заменим один электроприемник мощностью 95 Вт на другой мощностью 200 Вт (лампочка). Произойдет следующее. На лампочке 95 Вт будет падение напряжения 166 В. Она будет очень ярко гореть. А на лампочке 200Вт будет падение напряжения 34 В. И она будет еле еле накалена. Связано это с тем что напряжении прямопропорционально Сопротивлению. А сопротивление менее мощной лампочки больше. Тоесть на более мощных приборах маленькое сопротивление. На маленьком сопротивлении выделяется маленькое напряжение. Но проэксперементируем дальше. Вместо лампочки 200 Вт мы поставим другого потребителя. Фен. Мощностью 2 кВт. Мы видим что фен вообще не включается. На 95 Вт лампочке 184 В.

Итак мы разобрались в теории цепей и переходим к нашей проблеме. Рассмотрим трехфазную систему.

Данная система представлена на рисунке 3

Мы видим что первый проводник это нулевой провод. Второй третий и четвертый это фазы А, В, С

И на каждой фазе находится потребитель. Каждому потребителю приходит ноль. Типичная схема соединения звезды. На каждой фазе в данный момент по 220 В. Это напряжение между фазой и нулем. А напряжение между фазой например А и фазой В 380 В.

Включаем потребителей на каждую фазу. Например возьмем лампочку 65 Вт, лампочку 95 Вт и лампочку 200 Вт. Включаем Автоматический выключатель. Видим что напряжения на всех фазах одинаковое. Ток течет от фазы через потребителя на нулевой провод. Далее ставим всех три лампочки 65 Вт для наглядности следующего эксперимента.

И далее момент истины. Мы обрываем НОЛЬ. НА первый взгляд ничего не происходит. Лампочки светятся, напряжение на каждой фазе какое и было.

Но по какой цепи сейчас идет ток. Явно не по фаза ноль. Ноль же в обрыве. А он течет по цепи фаза потребитель фаза. У нас получается последовательное подключение. При котором общее напряжение делится. И так как потребители равные по мощности то и напряжение делится по равному.

А давайте заменим лампочку 65 Вт на лампочку. И получается что где лампочка 200 Вт там более мощный потребитель. На нем падение напряжение будет меньше. 100В Соответственно на других оно увеличится. До 280В.

Суть явления заключается в следующем. При обрыве нулевого проводника потребители оказываются подключены последовательно в цепь напряжением 380 В. В результате чего потребители более мощные получают меньшее напряжение. А менее мощные большее напряжение.

Теперь логичный вопрос. «А как же с этим бороться».

Первый способ это выполнить повторное заземление нулевого проводника. Преднамеренно подключаем провод заземления к нулевому проводу чтобы в случае обрыва нуля у нас сохранилось параллельное соединение потребителей. Напряжение конечно изменится но не до критичного уровня. Но ноль необходимо будет восстановить.

А второй способ это применение реле напряжения. Оно будет защищать от многих проблем. В том числе от пониженного и повышенного напряжения.

На рисунке представлены сразу два варианта.

Данная информация взята с ютуб канала

Теперь мы понимаем к чему может привести обрыв нулевого провода. Спасибо что были с нами. Ждем ваших вопросов в комментариях.

Неисправность электропроводки. 380 вольт вместо 220

Рассмотрим ваши действия, при этой неисправности, причину, и возможное предотвращение и исправление её.

Электропроводка вас никогда не подводила, и вовсе тонкости электромонтажа вы никогда не вникали, и конечно при любой проблеме с электричеством вызывали электрика профессионала и при этом ничего не трогая и ждали пока он всё исправит. Это не всегда полезно для ваших электрических приборов. В некоторых случаях лучше знать симптомы неисправности электропроводки чтобы вовремя и правильно среагировать на те или иные непредвиденные обстоятельства в электросети.

Одна из серьёзных неисправностей электропроводки таких как повышенное напряжение в сети (вместо 220 вольт 380), требует немедленного реагирования. В лучшем случае сгорает вся электроника и бытовая техника в худшем- пожар.

Предположим вы сидите в квартире и отдыхаете. Вдруг люстра загорелась в два раза ярче, и в ней лампочки стали лопаться одна за другой, холодильник заревел как медведь. Бросайте все и выдергивайте из сети все свои дорогостоящие электроприборы и выключайте квартирные электроавтоматы. У вас в квартире вместо 220 вольт входит 380 вольт. Правильным и самым надёжным действием в этой ситуации выключение всех квартирных электроавтоматов в электрощите. Лучше заранее знать, какие автоматические выключатели отключают электричество в вашей квартире, чтобы не отключить электричество у соседей.

Так откуда взялось в вашей квартире вместо 220 вольт 380 вольт? Вопрос конечно интересный.
Вариант 1::
В чём же причина столь опасной неисправности электросети?
Давайте разберем причину, она проста. У вас на лестничной клетке в щите отгорел основной нулевой провод . Нули всех квартир соединены к основному нулевому проводу. В вашу квартиру приходит, предположим Фаза1, а в соседнюю квартиру подведена другая фаза, отличная от вашей, назовём фаза2. Через любой прибор(например лампочку )фаза2 проходит по соседней квартире до нуля на лестничной клетке и по вашему «нулевому» проводу идет к вам в квартиру. У вас получается, приходит в квартиру ваша Фаза1 и по нулевому проводу, вместо нуля( так как отгорел основной нулевой проводник) Фаза2. Для справки: напряжение — разность потенциалов между двумя точками, напряжение между двумя фазами 380 вольт.
У вас в розетке получается две фазы — 380 в и вся техника начинает перегорать, так как она рассчитана на 220 вольт.

Это можно избежать, если проводить проверку электропроводки в электрощитешите. Проводить профилактику всех прижимных винтов, потягивать их раз в год. Винты могут самоослаблятся. Самораскручивание происходит из-за перепада температур. Тепло и холод, винты расширяются и сужаются и винт постепенно саморакручивается. Это кстати касается не только электрических соединений, но для всех болтовых соединений. Если болт, через который идёт электрический ток, недозакручен он начинает греется. При возрастании нагрузки электропровод, закреплённый этим болтом, начинает плавиться, в итоге провод отгорает.

Квартиру можно защитить электроавтоматикой. Можно, и даже нужно, при входе в квартиру, либо в квартирном электрощите, поставить реле контроля верхнего и нижнего напряжения. Реле контролирует , если идет слишком повышенное напряжение, и с помощью контакторов отключает его. Такую схему в электрощите может собрать профессиональный мастер электрик. При этом другая электроавтоматика такая как Устройство защитного отключения ( УЗО ) не поможет.

Чаще всего это случается по вине электрика -халтурщика, он при электромонтаже плохо закрутил прижимной винт, который крепит основной провод нуля в щите. Конечно все причины идут с самого начала, но и в процесе эксплуатации электропроводки надо не забывать о её проффелактике.
Вот основные правила чтобы избежать неисправностей в электропроводке: качественный электромонтажпроводов; профилактика электропроводки ; установка защитной электроавтоматики на все случаи неисправности электросети.

Вариант 2:
Как правило в магазин, офис, коттедж подводят 380 вольт. Если основной ноль исчез или отгорел, то через любой прибор(лампочку) фаза2 приходит на нулевую колодку, а оттуда на розетки, присоединяясь к фазе1. Варианты причин и действий такие же как в первом случае. Опять можно поставить реле контроля верхнего и нижнего напряжения для защиты своей электрической сети.

Он самый неизвестный и редкий, но от этого не менее опасный.
Как правило, в коттеджах электрику выполняет одна фирма, пожарную сигнализацию вторая фирма, кондиционеры третья, ТВ-антенну делает четвертая фирма, компьютерную сеть тянет еще кто-нибудь… В этом заключается опасность.
Возьмем компьютерную сеть. Она соединена молоточными проводами между собой. Так получается, что компьютер на первом этаже соединен с фазой 1, а компьютер на втором этаже с фазой 2 и вместе они соединины маломочными проводами. Такая же ситуация у кондиционеров, и у телевизоров. Что же может произойти ?. На моей практике горели компьютерные сети именно из-за этого. В принципе этого не должно происходить т.к. по сигнальным проводам не течет переменный ток или течет, но очень слабый. Так
в ситуации, когда отсутствует заземление или при неисправности техники, плюс человек во время работы всей сети пытается произвести соединение этим сигнальным проводом между двумя компьютерами на разных фазах образуется напряжение 380 вольт между ними. Для справки: напряжение — разность потенциалов между двумя точками. В таком случае сгорает компьютер или сигнальный провод. Это происходит редко, но происходит. Как правило, если фирма делает проводку , она старается, чтобы компьютерная сеть, кондиционеры и телевизоры питались от одноименных фаз. Фазы при электромонтаже метят разными расцветками. От одной фазы надо запитать все приборы этой сети.

Для исправления первом виде неисправности электропроводки конечно нужен электрик профессионал, я бы не советовал не подготовленному человеку что-то делать в электрощите тем более что там не 220 а 380вольт. Пришедший электрик должен выключить все автоматы на лестничной площадке, если понадобится то обесточить весь подъезд. Зачистить основной нулевой провод, и квартирный нулевой провод и соединить их в надёжное болтовое соединение. После этого можно включать все автоматы — проблема исправлена.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Откуда в розетке 380 вольт?

Всем привет! В данной статье хочу наглядно на рисунках показать в какой ситуации в обычных домашних розетках может появиться 380В и более вместо стандартных 220В. По новому ГОСТу даже 400В. Это очень высокое напряжение, от которого выходит из строя вся электронная бытовая техника, горят компрессоры холодильников, моторы и т.д. Мало того, что сама техника перегорает, так она еще может загореться и привести к пожару. Это очень опасно и поэтому про данную аварийную ситуацию нужно знать и нужно знать как от нее защититься.

Вот посмотрите ниже на фото какие напряжения были на разных фазах в одном коттеджном поселке Московской области. На фазе L1 было 391В, на фазе L2 было 319В, на фазе L3 было 426В. Данные устройства имеют некоторую погрешность в измерениях, но я думаю в такой ситуации плюс минус один вольт роли уже не играет. У людей сгорело очень много бытовой техники и теперь они пытаются найти правду и справедливость. А в доме, где стоят данные приборы, даже ничего и не заметили. Как мы видим высокое напряжение в нашей действительности это реальность и поэтому давайте вместе разберемся откуда в розетке может появиться 380В?

Ниже на рисунке я схематично изобразил дом. Представим, что это типичная многоэтажка. У них обычно в подвале находится вводной электрощит — ВРУ. От подстанции к нему всегда приходит 3-хфазное питание. По стоякам от ВРУ и до последнего этажа поднимаются четыре или пять жил, то есть все три фазы. Если пять жил, то это три фазы, нулевой рабочий и нулевой защитный проводники. Это современная система заземления. Ее применяют сейчас при строительстве новых домов. Если дом старый, то там скорее всего в шахте можно найти только четыре жилы — это три фазы и PEN проводник. Это старая система заземления. На своих рисунках я изобразил пятипроводную систему.

Итак, на каждом этаже присутствуют все три фазы. Но в квартиры заходит однофазное питание. Если на лестничной площадке три квартиры, то одна квартира подключена к фазе L1, вторая к L2 и третья к L3. Это делается, чтобы распределение нагрузки по фазам было более менее равномерным. Получается, что у квартир разные фазы, но общие нулевой рабочий (ноль) и нулевой защитный (заземление) проводники. В разных квартирах жильцы занимаются разными делами и включают разное количество потребителей. Поэтому нагрузка по фазам все равно не равномерная.

Теперь вспомним какие бывают соединения в электрике и как они влияют на ток и напряжение.

Все домашние потребители подключаются к сети параллельно. То есть к каждой розетке приходит свои фаза и ноль. При таком подключении в каждом потребителе будет одинаковое напряжение. По современному ГОСТу оно должно быть 230В. Поэтому в нормальной ситуации в каждой розетке должно быть 230В. Это правильно и все работает исправно. При параллельном подключении общий ток складывается из токов каждого участка цепи.

Последовательное соединение — это когда от источника питания пришел провод к потребителю на один контакт. Далее со второго контакта провод ушел на следующий потребитель на первый контакт. С его второго контакта — на третий потребитель и т.д. При последовательном соединении во всей цепи ток будет одинаковый у каждого потребителя, но напряжение будет разным. Общее напряжение всей цепи будет складываться из напряжений на каждом потребителе. Если потребители имеют разную мощность, то и напряжение на них будет разное. Последовательно розетки и потребители нельзя подключать. Так они исправно работать не смогут. Их нужно подключать только параллельно.

Ниже на рисунке все это наглядно показано.

Теперь пару слов о линейном и межфазном напряжении. Между любым фазным и нулевым рабочим проводниками напряжение (линейное) составляет 230В. Напряжение между разными фазами (межфазное) составляет 400В. Ниже также все наглядно показано. Думаю все понятно. Это же так легко)))

Так как в квартиры заходит одна из фаз и ноль, то во всех розетках присутствует 230В.

Когда все надежно подключено, то все работает в штатном режиме. Вот так «течет» ток в одной квартире. От источника питания к розетке электроны бегут по фазному проводнику. Далее они там стирают, варят, греют, светят и т.д. Поработав, уставшие электроны по нулевому рабочему проводнику возвращаются домой в источник питания. Не знаю успевают ли они там отдохнуть, но они снова по фазному проводнику бегут на работу. И так по кругу до бесконечности прямо как взрослые люди ))) Данный путь на рисунке я выделил красными жирными стрелками.

Так выглядит другая квартира.

Так вот, если со временем какой-нибудь контакт подключения проводника в ВРУ ослабевает и потом совсем пропадает, то это означает, что цепь движения тока нарушается. Если отгорит фазный проводник, то пропадет электричество в тех квартирах, которые подключены к данной фазе. Это как бы пол беды и не так страшно. Дома ничего опасного не произойдет и только не будет работать домашняя техника. Потом приедут местные электрики, прикрутят фазу обратно или заменят вставку и все заработает по прежнему. Но на долго ли.

Так откуда же в розетках может появиться 380В? Вот откуда. У всех потребителей один общий нулевой рабочий проводник (ноль). Вот если отгорит он, то подключение всех розеток станет последовательным. Смотрите следующий рисунок. Ноль оборван и по нему нет обратного пути к источнику тока, но есть путь по нулевому рабочему проводнику к другим розеткам, подключенным к другим фазам. В итоге получается, что потребители уже подключены последовательно и между разными фазами. А мы уже знаем, что между разными фазами 400В. Так как каждый потребитель имеет свою мощность, например, телевизор 300Вт, а духовой шкаф 2000Вт, то соответственно на них будет падать напряжение обратно пропорционально их мощности. На рисунке для наглядности я привел значения мощности 500Вт в одной квартире и 3500Вт в другой. Малыш извини, но тебе сегодня не повезло ))) Суммарное напряжение будет 400В, так как потребители подключены между разными фазами. А вот падение напряжения будет у каждого свое. Чем меньше мощность, тем выше будет напряжение и наоборот. Поэтому в квартире, где были подключены потребители суммарной мощностью 3500Вт, напряжение упадет до 50В. В другой квартире, где было включено мало потребителей мощностью 500Вт напряжение подскачет до 350В. А это уже очень опасное напряжение, которое выводит бытовую технику из строя.

Для большей наглядности описываемой ситуации я убрал лишнее. Вот так должно быть более понятнее. Наверное.

Вот отсюда в розетке и появляется 380В. Вот вам один из реальных примеров данной ситуации. К сожалению, они случаются довольно часто. Мало того, что люди несут материальный ущерб, так потом еще нужно много сил и энергии, чтобы что-то доказать.

Для защиты от такой ситуации можно использовать разные защитные устройства, например реле напряжения УЗМ-51М, УЗМ-50Ц, РН-106 или расцепители максимального напряжения Legrand POP (артикул 406286), IMSU от Schneider Electric и т.д.

Берегите себя и отноститесь к электричеству с особым вниманием.

Как в розетке может появиться 380 Вольт и что потом

Наверное, многим известны случаи, когда в обычной домашней электросети внезапно повышается напряжение почти до 380 вольт, отчего выходит из строя большая часть электроприборов. Многие наверняка слышали о таких случаях от знакомых, а некоторые и сами от них пострадали. Из-за того, что большинство людей не понимает причины этого явления, они начинают предполагать, что где-то какой-нибудь электрик случайно перепутал провода и подал на них не то напряжение. А дальше начинается поиск виноватых, который никак не может дать правильный результат без понимания истинной причины неисправности. На самом деле, для того, чтобы в розетках появилось повышенное напряжение, совершенно не обязательно именно в этот момент совершать каких-либо действий и что-либо перепутывать. Истинной причиной такой неисправности, является либо естественный износ электропроводки, либо ее недостаточно качественный монтаж, причем выполненный задолго до возникновения неисправности.

Для того, чтобы понять, как возникает эта неисправность, необходимо сначала изучить, как вообще электроэнергия попадает к потребителю. Как правило, электропроводка, состоящая из двух проводов, по которым поступает напряжение в 220 вольт, существует исключительно на самом последнем участке пути к потребителю. Например на участке после группового щита с автоматами и электросчетчиками. А до этого щита от поставщика электроэнергия передается посредством трехфазной электросети. Именно такая электросеть является самым распространенным способом передачи электроэнергии, а вовсе не двухпроводная сеть с напряжением 220 вольт.

Как устроена трехфазная сеть ? В трехфазной электросети электроэнергия передается по четырем проводам. Три из них называются фазами (например A, B и C), а четвертый — нулевым проводом. Если не вдаваться в малопонятные подробности со сдвигом фаз, то достаточно понимать простой факт -между нулевым проводником и любой из фаз напряжение составляет 220 вольт, а между любыми двумя фазами — 380 вольт.

Подключение потребителей к такой сети происходит очень простым способом — одна квартира подключена в нулевому проводу и фазе A, соседняя квартира — к нулевому проводу и фазе B, еще одна квартира — к нулевому проводу и фазе C. Схема распределения потребителей по фазам может быть различной, но всегда преследует одну цель — как можно равномернее распределить потребителей по трем фазам, по возможности не допуская попадания в одну квартиру более одной фазы. Таким образомбез каких либо трансформаторов или других устройств в каждой квартире имеется два провода, напряжение между которыми составляет 220 вольт. А про напряжение в 380 вольт многие потребители вообще ничего не знают.

Теперь допустим, что на участке от электрощита к поставщику в проводке возникает неисправность — обрывается какой-то провод. Если оборвана какая-либо из фаз, то все просто — в какой-то группе квартир просто не будет напряжения и ничего плохого не случится. Самое интересное начинается, если обрыв происходит в нулевом проводе.

Рассмотрим, что происходит при обрыве нулевого проводника на участке от электрощита до поставщика электроэнергии. В каждой из квартир имеется какое-то количество электроприборов включенных в сеть. Все электроприборы внутри квартиры соединены параллельно друг другу и их можно считать одной общей нагрузкой. Эта общая нагрузка подключена к какой-то из фаз, и нулевому проводу. Т.е. в квартире, подключенной к фазе A имеется нагрузка A, в квартире подключенной к фазе B — нагрузка B, а в квартире подключенной к фазе С — нагрузка С. Все эти нагрузки подключены к нулевому проводнику в щитке, который из-за обрыва в линии не подключен более никуда, и является в этом случае исключительно местом соединения нагрузок между собой. Теперь представим себе, что в квартире Cхозяева предусмотрительно ушли из дома, отключив от сети все электроприборы. В квартире B кто-то работает с маломощным ноутбуком, а в квартире A — кто-то включил мощный электрический чайник.

Теперь получилось, что ноутбук подсоединен к фазе B и нулевому проводу, а чайник — к тому же нулевому проводу и фазе A. Но нулевой провод за щитком оборван, и более никуда не подключен, т.е. только соединяет ноутбук с чайником. Получается, что ноутбук соединен последовательно с чайником и они вместе подключены к двум разным фазам A и B. Но мы знаем, что между фазами A и B напряжение 380 вольт ! Как распределится напряжение между ноутбуком и чайником ?

Если бы мощность чайника была бы равна мощности ноутбука, то напряжение поделилось бы между ними поровну и составило половину от 380 вольт на каждом из них. Но чайник в десятки раз мощнее ноутбука, т.е. один чайник равен двум десяткам параллельно соединенных ноутбуков. А с точки зрения одного ноутбука, чайник — это почти то же самое, что просто кусок провода. Таким образом, напряжение на этих двух приборах поделится обратно пропорционально их мощности — на мощном приборе напряжение будет маленьким, а на маломощном — наоборот большим. В данном случае напряжение на ноутбуке будет в десятки раз больше чем на чайнике, и составит значение, очень близкое к 380 вольтам. Понятно, что в этом случае блок питания почти гарантированно выйдет из строя.

Описанное явление опасно не только потому, что приводит к поломке самих электроприборов, но еще и потому, что может привести к пожару. Например, современные электронные устройства в большом количестве содержат электролитические конденсаторы. При повышении напряжения на таком конденсаторе он взрывается, причем взрыв может сопровождаться разбрызгиванием горючего электролита и искрой, от которой этот электролит вполне может загореться.

Как защититься от подобных неприятностей ? Для этого можно предложить два способа. Первый из них хоть и не всегда сможет защитить ваш дом и ваши электроприборы, но зато не стоит практически ничего — уходя из дома физически отключайте как можно больше электроприборов от электросети. Очень многие современные электронные приборы — телевизоры, компьютеры, принтеры и т.п. не имеют физического выключателя и остаются под напряжением даже в выключенном состоянии. При внезапном повышении напряжения эти электроприборы не только могут выйти из строя, но и стать причиной пожара. И за тот же телевизор или принтер можно быть абсолютно спокойным, если уходя из дома вы своими руками выдернете его шнур из розетки.

Второй способ немного сложнее и дороже, но и более эффективный. Он состоит в установке в вашем электрощите, помимо обычных автоматов и УЗО (УЗО защищает от поражения током, но не защищает от повышения напряжения), специального устройства защиты от повышенного напряжения. Называется этот прибор Реле напряжения RBUZ! Это устройство автоматически отключит напряжение в вашей домашней электросети при его повышении выше 265 вольт или понижении ниже 170 вольт,и автоматически включит его обратно, когда напряжение вернется к нормальной величине.

Как подключить розетку на 380 вольт: виды розеток и особенности монтажа

Силовые розетки мощностью 380В активно применяются в промышленности и строительстве. Конструкция выдерживает как механические, так и электрические нагрузки. Удобные крепления предотвращают короткие замыкания и выход из строя техники. Уникальные особенности, простое подключение и безопасная эксплуатация — основные достоинства данного продукта. Главное — правильно подключить силовую розетку мощностью 380 вольт.

  1. Особенности розетки 380В
  2. Виды розеток
  3. Маркировка
  4. Способы подключения
  5. Четырехпроводные сети
  6. Пятипроводные сети
  7. Подключение трехфазной розетки
  8. Проверка розеток

Особенности розетки 380В

Силовая Розетка Takel стационарная внутренняя 380 вольт

Силовые кабельные разъемы предназначены для тяжелых технических условий. Промышленная вилка и усиленная розетка мощностью 380в защищены прочным корпусом, способным выдерживать небольшие удары. Простота соединения, крепкий пластик и высокая пропускная способность позволяют использовать соединительную конструкцию на открытом воздухе, в промышленных цехах или во время строительных работ. К изделию предъявляются повышенные требования безопасности.

Контакты имеют большую площадь соприкосновения, что уменьшает нагрузку и исключает возможный перегрев. Каждый кабельный зажим крепится винтовым соединением, удерживающим провод в своем посадочном месте. Медная конструкция защищена от коррозии, а также устойчива к росту окисной пленки.

Зажим надежно удерживает кабель, предотвращая разрыв. Специальные пазы обеспечивают крепкое соединение и устраняют люфт. Контакты имеют разный диаметр и расположены под своим углом. Соединение обеспечивает защиту от несимметричного подключения, что предотвращает короткое замыкание.

С высоким напряжением растет риск образования дуги. Каждая розетка 380 имеет механическую или автоматическую защиту. Устройство способно остановить подачу электропитания до извлечения. Решение сокращает риск поломки оборудования или получения ожогов кожи.

Пластик устойчив к перегреву, не горюч и способен выдерживать действия прямых солнечных лучей. Предусмотрена защита от пыли и влаги, что сохранит качество деталей и сделает работу безопасной.

Электрическая розетка на 380 вольт изготавливается в соответствии со стандартом IP 44 или IP67.

Виды розеток

Силовые соединения отличаются по форме, способу крепления и количеству контактов. Розетка может иметь от 3 до 5 подключений. Чтобы разобраться в чем отличие, важно изучить принцип работы. В странах СНГ используется трехфазная сеть напряжением в 380В. В стандартной квартире используется 220В. Данный показатель можно получить соединив одну из трех фаз с нулевым проводом. Чтобы выполнить подключение промышленной розетки на 380 вольт, достаточно объединить две фазы и нулевой провод. Подобный принцип подключения имеет обычная электрическая плита.

Существует несколько стандартов силовых разъемов:

  • 2Р+РЕ — используется две фазы и один заземленный контакт;
  • 3Р+РЕ — 3 силовых кабеля и один заземленный;
  • 3Р+РЕ+N — 3 фазы, одна земля и ноль;
  • 3Р+N — три силовых контакта и один нулевой.

Коммутационные соединения различаются не только по количеству контактов, но и по строению корпуса. Есть кабельные конструкции, служащие соединению переносимых устройств. Фланцевые коммутаторы изготовлены с креплением, которое можно встраивать в стену прямо или под углом. Последний вид — накладные розетки. Некоторые корпуса комплектуются дополнительным защитным колпачком.

Маркировка

Буквой P обозначают силовой или фазный провод, N — нулевой, а обозначение PE указывает на заземляющий кабель. Также провода имеют цветовую маркировку. Правила устройства электроустановок требуют обозначать фазу бардовым, красным или коричневым цветом, ноль — синим или голубым оттенком. Земля окрашивается в два цвета — желтый и зеленый.

Кроме вольтажа, на корпусе указывается максимально допустимая сила тока. Промышленная розетка 380в способна выдержать 16А, что для обычной сети приемлемо. Для более мощных используют соединения на 32, 63 и 125 ампер. Чтобы избежать перегрева и воспламенения, важно заранее проверить силу тока электросети.

Также маркировка может обозначать степень защиты. IP44 указывает на то, что розетка изолирует электропроводящие площадки от попадания брызг воды и частичек пыли. Часто такие корпуса комплектуются накладной защитой.

Маркировка IP64 предполагает полностью герметичный корпус. Максимальная защита позволяет производить соединения в помещениях или на открытых пространствах с повышенной влажностью.

Способы подключения

Силовой кабель ВВГнг(A)-LS

Высокое напряжение опасно для жизни, поэтому не следует пренебрегать ТБ и правилами подключения.

Основа любого соединения — кабель. Важно подобрать правильное сечение, подходящее по размеру и способное выдержать потенциальную нагрузку. Согласно ГОСТу, для розетки с напряжением 380В и силой тока 16 А достаточно провода с сечением от 1,5 до 4 мм. Кабель вилки должен быть минимум 1,5 и не более 2,5 мм. Толщина провода с заземлением должна быть 6 мм.

Монтируя коммутационные элементы, важно пользоваться правилом: подающий кабель — розетка, принимающий — вилка. Зачищая провод, нельзя допускать обламывание или запутывание жилы. Чем однороднее будет контактная часть кабеля, тем лучше передача и меньше перегрев.

Четырехпроводные сети

Монтаж проводов начинается с разбора корпуса. Коммутат орная розетка на 380 вольт имеет 4 контакта , три из которых фаза. Возле контактов необходимо найти обозначения L1 L2 L3 и в произвольном порядке подключить к ним три фазных провода. Далее требуется найти нулевой провод и зажать его на клеме, подписанной буквой N.

Пятипроводные сети

При подключении разъема с пятью контактами используется схема схожая с предыдущей. Обозначение возле контактных площадок такое же: L1 L2 L3 — фаза, N — ноль и PE — провод с заземлением. Наличие земли требует дополнительный элемент цепи — автомат УЗО. Данная связка позволит предотвратить поражение током, если корпус или монтажная рейка будут под напряжением.

Подключение трехфазной розетки

Подключение может происходить как с применением УЗО, так и без. Все зависит от наличия защитного заземляющего кабеля. Подключение симметрично, поэтому порядок соединения силовых кабелей произвольный. В конце монтажных работ следует проверить правильность подключения и исправить ошибки.

Проверка розеток

Перед эксплуатацией важно сделать проверку, которая состоит из четырех основных пунктов:

  1. Визуальный осмотр на возможные физические дефекты в корпусе.
  2. При наличии мегаомметра проверяется прочность изоляционного покрытия. Во время диагностики розетка 380 вольт должна быть обесточена.
  3. С помощью прибора провоцируется короткое замыкание, чтобы проверить правильность подключения.
  4. Замер линейного и фазного напряжения на холостом ходу.

Во время проверки рабочее напряжение между фазами должно быть не более 380В и 220В на одной жиле. В конце следует еще раз проверить правильность и качество соединения. Плохо затянутый контакт перегревается и выходит из строя, повреждая при этом корпус.

При размыкании цепи может возникнуть дуга, которая создаст опасность для жизни и риск поломки. Чтобы избежать данного явления, перед демонтажем следует всегда отключать подачу тока. В более дорогих версиях стоит автомат.

В ходе эксплуатации провода нагреваются и расширяются. В результате винтовые соединения ослабевают, что приводит к плохому контакту. Каждый год необходимо проводить протяжку всех проводов.