- Диодный мост в трехфазной сети
- Диодный мост схема, принцип работы
- Принцип работы диодного моста
- Трехфазный диодный мост схема
- Принцип действия и схема трехфазного мостового выпрямителя
- Описание выпрямителей
- Принцип действия
- Однополупериодный многофазный выпрямитель
- Двухполупериодный выпрямитель
- Мостовые устройства
- Особенности трехфазного моста и варианты его построения
- Сравнение однофазных и трехфазных устройств
- Как устроен трехфазный выпрямитель
- Принцип работы и схемы
- Мостовой тип устройства
- Свойства трехфазного напряжения
- Работа диодного моста
- Действие схемы
- Диодный мост: схема подключения и назначение
- Что такое диоды
- Однофазный и трёхфазный диодный мост
- Принцип работы диодного моста
- Выпрямитель
- Преимущества двухполупериодного диодного моста
- Недостатки полного моста
- Конструкция
- Маркировка выпрямителей
- Диодный мостик своими руками
- Выбор типа сборки
- Проверка элементов
- Использование барьера Шоттки
- Видео
- Что такое диодный мост и как он работает?
- Устройство и принцип работы
- Обозначение на схеме и маркировка
- Разновидности диодных мостов
- Технические характеристики
- Преимущества и недостатки
- Практическое применение
- Примеры схем с диодным мостом и их описание
Диодный мост в трехфазной сети
Диодный мост схема, принцип работы
В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.
Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.
Принцип работы диодного моста
Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.
Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.
Трехфазный диодный мост схема
Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.
Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.
Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.
Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.
Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.
13 thoughts on “ Диодный мост схема, принцип работы ”
Как будет выглядеть синусоида, при полключении двух фаз?
Вопрос на засыпку.
Подключение 3-х диодных мостов к трем фазам с общей нейтралью. То есть на каждом диодном мосту есть N и L1, N и L2, N и L3 по 220 вольт. На выходе с мостов делитель на 100 и конденсатор на общей минусовой земле.
Я считал что нет фазы и нет выходного напряжения с диодного моста, но это не так.
Так как работает однофазный мост установленный 3 раза на каждую фазу и объединенный общим минусом?
Надеюсь правильно представил себе эту схему… Если объединить минусы хотя бы 2-х диодных мостов, то получим межфазное короткое замыкание через диоды.
Если было там КЗ меж фаз, то диоды 1n4007 (1А, 1000 В) испарились бы в пыль. Значит КЗ там скорее всего нет.
Если бы было замыкание был бы бабах, а его не и все работает только криво.
сколько постоянки будет на выходе с моста при условии ровнячка 220 в на фазе?
Если не применять фильтры то после однофазного диодного моста не будет постоянного напряжения, будет однополярное. Если поставить конденсатор сглаживающий пульсации, то можно добиться напряжения : входное напряжение умножить на корень из 2, минус двойное падение на диодах (это около 2 В).
Если смотреть трехфазные схемы, то там и без фильтров пульсации меньше. Среднее выходное напряжение будет сильно зависеть от схемы включения.
Например для схемы треугольник-Ларионова среднее выходное составить 1,35 от действующего входного. А для звезды-Ларионова коэффициент равен 2,34.
Давайте немного уточним терминологию — тогда после реального конденсатора тоже не будет постоянного напряжения. Во всех случаях (даже после однофазного диодного моста) будет постоянная составляющая и переменная. При этом постоянная составляющая будет в первом случае, вроде, равна половине действующего напряжения минус падение на диоде (в количественной оценке могу ошибаться, лень считать)». А переменная во втором случае будет значительно меньше: тем меньше, чем больше приближение реального конденсатора к идеальному бесконечной емкости (при реальном источнике напряжения).
Здравствуйте. Вопрос:
Можно ли трёхфазный диодный мост (конструктивное исполнение) подключать к однофазной сети? Спасибо.
можно. просто один входящий будет не задействован.
можно.
просто задействовать два входа из трёх
Принцип действия и схема трехфазного мостового выпрямителя
Пользователям силовых цепей 380 Вольт в домашнем хозяйстве нужен пассивный (неуправляемый) трехфазный выпрямитель. Знание некоторых особенностей электронного устройства и существующих схем выпрямления окажется очень полезным. Это поможет владельцу силового оборудования эксплуатировать его более грамотно и рационально в течение длительного времени.
- Описание выпрямителей
- Принцип действия
- Однополупериодный многофазный выпрямитель
- Двухполупериодный выпрямитель
- Мостовые устройства
- Особенности трехфазного моста и варианты его построения
- Сравнение однофазных и трехфазных устройств
Описание выпрямителей
Трехфазный мостовой выпрямитель
Основное отличие устройств от своих однофазных аналогов проявляется в следующем:
- первые устанавливаются в линиях 220 Вольт и служат для получения постоянных токов незначительной величины (до 50-ти Ампер);
- трехфазные выпрямители используются в цепях, где рабочие (выпрямленные) токи существенно превышают этот показатель и достигают нескольких сотен Ампер.
- в сравнении с однофазными образцами эти приборы имеют более сложное устройство.
Известны схемы выпрямления трехфазного напряжения, позволяющие получить на выходе минимальный уровень пульсаций.
В электротехнике они называются «трехфазные мостовые выпрямители», так как по способу открывания диодов, управляемых полярностью напряжения, они напоминают мост через реку с односторонним движением. Только направление потока электронов в них чередуется с частотой 50 Гц, недоступной для проезда машин поочередно в каждую из сторон.
Принцип действия
Принцип работы трехфазного выпрямителя
Принцип работы любого преобразователя синусоидального напряжения основан на выпрямительных свойствах особого полупроводникового элемента – германиевого или кремниевого диода. При протекании через него переменного тока положительная полуволна свободно «проходит» через рабочий электронный переход, смещенный в прямом направлении. При воздействии отрицательной полуволны электроны встречают препятствие в виде потенциального барьера, так что ток через переход течь не может.
В простейших схемах включения используется неполный цикл обработки переменных уровней, так как вторая полуволна безвозвратно теряется. Это заметно снижает преобразуемую мощность. Для сохранения полезной составляющей были разработаны 2-хполупериодные схемы выпрямления, в которых количество диодов увеличено до двух.
«Цепь полного цикла» может содержать 4 выпрямительных элемента, но такая схема относится к категории мостовых.
Однополупериодный многофазный выпрямитель
Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.
Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:
- эффективность (КПД) действия такого устройства очень низка;
- полезная мощность теряется при обработке отрицательных полуволн всех трех фаз;
- при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.
Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.
Двухполупериодный выпрямитель
Некоторые образцы силового оборудования работают только при большой величине выпрямленного тока, протекающего в нагрузке. Ее неспособны обеспечить однополупериодные выпрямители, что объясняется значительными потерями в них. Для повышения нагрузочной способности в цепях трехфазного тока все чаще применяются двухполупериодные выпрямительные приборы, содержащие по два диода на каждую из фаз.
Классическое включение в этом случае выполнено по схеме Ларионова, в честь которого названо и само выпрямительное устройство.
Анализ рабочих диаграмм такого выпрямителя наглядно свидетельствует о его бесспорных достоинствах. При работе этих схем используются как положительные, так и отрицательные полуволны, что поднимает КПД всего преобразователя. Объясняется это тем, что трехфазная структура схемы совместно с двухполупериодным выпрямлением обеспечивают шестикратное увеличение частоты пульсаций. За счет этого амплитуда сигнала на выходе после сглаживающих конденсаторов заметно возрастает (в сравнении с однополупериодным выпрямителем), а отдаваемая в нагрузку мощность повышается.
Мостовые устройства
Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.
Принцип действия трехфазного мостового выпрямителя проще всего представить так:
- при действии на его входе переменного потенциала для каждой полуволны открытыми оказываются два диода из четырех, включенных как бы зеркально;
- в первом случае выпрямляется положительная полуволна входного напряжения, а во втором – отрицательная;
- в результате на выходе такой перекрестной схемы на одном полюсе моста всегда действует плюс, а на другом – минус.
Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).
Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.
Диаграммы или эпюры напряжения мостовых схем – лучшее подтверждение тому, что этот способ включения диодов в выпрямительную цепь обеспечивает максимум передачи энергии. При этом небольшие потери напряжения на переходах чаще всего удается компенсировать за счет лучшей фильтрации во вторичных цепях.
Особенности трехфазного моста и варианты его построения
Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».
Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.
В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.
Сравнение однофазных и трехфазных устройств
При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:
- первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз);
- выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке;
- с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.
Понять суть работы трехфазного выпрямителя совсем несложно. Для этого потребуется ознакомиться с основами работы вентильных устройств и проанализировать электрическую схему их включения. Знание принципа действия выпрямительных приборов поможет пользователю эффективнее использовать его в повседневной работе.
Как устроен трехфазный выпрямитель
Большая часть промышленного и профессионального оборудования, например, станки или сварочные аппараты используют трехфазное напряжение. Это значит, что они должны иметь в себе выпрямитель трехфазный. Обычно это устройство использует в себе трехфазный диодный мост. Обычно этих диодов шесть – по два на каждую фазу тока. Они могут обладать различными техническими характеристиками, в зависимости от мощности самого прибора, потребляемого тока и силы тока, необходимой для работы.
В статье будет рассказано о структуре трехфазного преобразователя, как он работает, на каком принципе основывается его функционирование и каких видов они бывают. В качестве дополнения, в статье приведены несколько видеороликов и одну скачиваемую статье в формате PDF.
Принцип работы и схемы
Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные. Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра. Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:
В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора. Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:
Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже. Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:
Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.
Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов. Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа. Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды – в процессе участвуют одновременно два диода — по одному из каждой группы.
Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.
Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы). Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими.
Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки. Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения.
Мостовой тип устройства
Трехфазная мостовая схема выпрямления использует шесть диодов (или тиристоров, если требуется управление). Выходное напряжение характеризуется тремя значениями: минимальным U, средним U и пиковым напряжением. Полноволновой трехфазный выпрямитель похож на мост Гейца. Схема полноволнового трехфазного устройства. Обычный трехфазный выпрямитель не использует нейтраль. Для сети 230 В / 400 В между двумя входами выпрямителя. Действительно, между 2 входами всегда есть составное напряжение U (= 400 В). Неконтролируемое устройство означает, что нельзя отрегулировать среднее выходное U для этого входного U. Неконтролируемое выпрямление использует диоды.
Управляемый выпрямитель позволяет регулировать среднее выходное напряжение, воздействуя на задержки срабатывания тиристора (используется вместо диодов). Эта команда требует сложной электронной схемы.
Диод ведёт себя как тиристор, загружаемый без задержки. Выходное U трехфазного выходного напряжения. Всего 7 кривых: 6 синусоид и красная кривая, соединяющая верхнюю часть синусоид («синусоидальные шапки»). 6 синусоидов представляют собой 3 напряжения, составляющие U между фазами и 3 одинаковыми напряжениями, но с противоположным знаком:
U31 = -U13U23 = -U32U21 = -U12.
Красная кривая представляет U на выходе выпрямителя, то есть на клеммах резистивной нагрузки. Это U не относится к нейтрали. Она плавает. Это U колеблется между 1,5 В max и 1,732 Вmax (корень из 3). Umax — пиковое значение одного напряжения и составляет 230×1,414 = 325 В.
Свойства трехфазного напряжения
Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца. Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.
Среднее значение трехфазного выпрямленного напряжения: avg = 1,654Vmax = 1,654 x (1,414×230) = 538 В. Выходное напряжение трехфазного выходного выпрямителя (зум). 3-фазный полноволновый выпрямитель MDS 130A 400V. 5 терминалов: 3 фазы, + и -. Этот выпрямитель содержит 6 диодов. Таким образом, можно суммировать следующие моменты:
- 6 диодов, 2 диода на фазу — слабая пульсация по сравнению с одноволновым выпрямителем (мост Гейца);
- среднее значение выпрямленного напряжения: 538 В для сети 230 В / 400 В;
- нейтраль не используется трехфазным выпрямителем.
Работа диодного моста
Он состоит из четырёх диодов, и эта конфигурация подключается через нагрузку. Во время положительного полупериода входных сигналов диодов D1 и D2 в прямом направлении смещены, а D3 и D4 обращены назад. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводиться — ток начинает протекать через него, как показано на рисунке ниже на красной линии. Во время отрицательного полупериода входного сигнала AC диоды D3 и D4 смещены вперёд, а D1 и D2 обращены в обратном направлении. Ток нагрузки начинает протекать через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.
В обоих случаях направление тока нагрузки одинаковое, как показано на рисунке одностороннее, что означает DC. Таким образом, при использовании мостового выпрямителя входной ток AC преобразуется в DC. Выход на нагрузке с помощью этого мостового выпрямителя имеет пульсирующий характер, но для получения чистого DC требуется дополнительный фильтр, такой как конденсатор. Такая же операция применима для различных мостовых выпрямителей, но в случае управляемых выпрямителей запускается тиристор, чтобы управлять током для нагрузки.
Режим 1 (от α до π). В положительном полупериоде подаваемого переменного сигнала SC1 T1 и T2 являются прямым смещением и могут быть включены под углом α. Напряжение нагрузки равно положительному мгновенному напряжению питания AC.
Режим 2 (π toπ + α). При wt = π входное питание равно нулю, а после π оно становится отрицательным. Но индуктивность противодействует любым изменениям для поддержания DC нагрузки и в том же направлении.
Действие схемы
Действие схемы 3-фазного полностью контролируемого мостового выпрямителя описывается в этой странице. Трехфазный полностью контролируемый мостовой выпрямитель может быть сконструирован, используя шесть тиристоров. Можно видеть, что напряжение фазы А является наивысшим из трех фазных напряжений, когда Θ находится между 30° и 150°.
Также можно видеть, что напряжение фазы В является наивысшим трехфазных напряжений, когда Θ находится в между 150 и 270° и что напряжение фазы С является наивысшим из фазных напряжений, когда Θ находится между 270 и 390° или 30° в следующем цикле.
Если используются диоды, диод d1 вместо s1 проводил бы напряжение от 30 до 150°, диод d3 проводил бы от 150 до 270° и диод d5 – от 270 до 390° или 30° в следующем цикле. Таким же образом, диод d4 проводил бы от 210 до 30°, диод d6 – от 330 до 450° или 90° в следующем цикле, и диод d2 проводил бы от 90 до 210°. Положительный рельс выходного напряжения моста соединяется с наивысшими сегментами конверта трехфазных напряжений и отрицательного рельса выведенного напряжения к самым низким сегментам конверта.
На любой момент кроме переходных периодов, когда электрический ток перемещен от одного диода к другому, только одна из следующих пар работает в каждый момент.
Промежуток Θ | Работающий диод |
30 до 90 | D1 и D6 |
90 до 150 | D1 и D2 |
150 до 210 | D2 и D3 |
210 до 270 | D3 и D4 |
270 до 330 | D4 и D5 |
330 до 360 и 0 до 30 | D5 и D6 |
Если используются тиристоры, их включение может быть задержано выбором нужного угла открытия. Когда тиристоры открываются при угле 0, выход из мостового выпрямителя такой же, как из схемы с диодами. Например, видно, что d1 начинает проводить только после Θ = 30°. Действительно, он может начать проводить только после Θ = 30°, так, как он реверсивно направлен до Θ = 30°. Смещение через d1 становится равным 0, когда Θ = 30° и диод d1 начинает становиться прямонаправленным только после Θ = 30°.
Когда Va(Θ)= E*sin (Θ), диод d1 обратно направлен перед Θ = 30° и прямонаправлен когда Θ = 30°. При нулевом угле открытия тиристоров s1 открывается, когда Θ = 30°. Это означает, что если синхронизирующий сигнал нужен для открытия s1, то сигнальное напряжение Va(Θ) отстает на 30° и если угол открытия Θ, тиристор s1 запущен, когда Θ = α + 30°. Предоставляют, что проводимость непрерывна, следующая таблица представляет пару тиристоров в проводимости в любой момент.
Промежуток Θ | Работающий диод |
α + 30 до α + 90 | S1 и S6 |
α + 90 до α + 150 | S1 и S2 |
α + 150 до α + 210 | S2 и S3 |
α + 210 до α + 270 | S3 и S4 |
α + 270 до α + 330 | S4 и S5 |
α + 330 до α + 360 и α + 0 до α + 30 | S5 и S6 |
Затем с изменением мгновенного угла проводящая пара соединяется с толстыми оранжевыми дугами. (на рисунке) Один способ представить себе – вообразить две щетки, которые являются 120° шириной и устройство в фазе соединенное с поведением щеток.
Щетка, которая имеет “угол открытия” написано рядом она действует как щетка соединенная с положительным рельсом и другая действует как будто бы она соединена с отрицательным рельсом. Эта диаграмма иллюстрирует, как схема выпрямителя действует как коммутатор и преобразует переменный ток в постоянный. Выходное напряжение определяется амплитудой фазового напряжения, являясь единым значением.
Диодный мост: схема подключения и назначение
В электротехнике существует несостыковка. С одной стороны, передавать энергию на большие расстояния удобнее, если она имеет форму переменного напряжения. С другой, для питания смартфонов, светодиодов в лампочках, плат в телевизорах и подобной бытовой техники требуется постоянный ток. Данную проблему успешно решает такое семейство радиодеталей, как выпрямительные диоды.
Что такое диоды
Диод – это полупроводниковый элемент на основе кристалла кремния. Ранее эти детали также изготавливались из германия, но со временем этот материал был вытеснен из-за своих недостатков. Электрический диод функционирует как клапан, т.е. он пропускает ток в одном направлении и блокирует его в другом. Такие возможности в эту деталь заложены на уровне атомарного строения его полупроводниковых кристаллов.
Один диод не может получить из переменного напряжения полноценное постоянное. Поэтому на практике используют более сложные сочетания этих элементов. Сборка из 4 или 6 деталей, объединённых по специальной схеме, образует диодный мост. Он уже вполне способен справиться с полноценным выпрямлением тока.
Интересно. Диоды обладают паразитной чувствительностью к температуре и свету. Прозрачные выпрямители в стеклянном корпусе могут использоваться как датчики освещённости. Германиевые диоды (прим. Д9Б) подходят в качестве термочувствительного элемента. Собственно из-за сильной зависимости свойств этих элементов от температуры их и перестали производить.
Однофазный и трёхфазный диодный мост
Существует две основные разновидности выпрямляющих сборок:
- Однофазный мост. Чаще используется в бытовых электроприборах. Имеет 4 вывода. На два их них подаётся переменное напряжение, т.е. фаза (L) и ноль (N). С двух оставшихся снимается постоянное, т.е. плюс (+) и минус (-).
- Трёхфазный мост. Встречается в мощных промышленных установках и оборудовании, питающимся от сети 380 вольт. На его вход подаются три фазы (L1, L2, L3). С выхода так же снимается постоянное напряжение. Такие мосты отличаются большими размерами и внушительными токами, которые они способны через себя пропустить.
Принцип работы диодного моста
Понять, как мост выполняет свою задачу, можно, разобравшись в том, как ведёт себя отдельный диод. Изначально имеются только два провода с переменным напряжением (L и N). Оно имеет форму синусоиды (рис. а). Если в схему добавить один диод, то он будет пропускать только положительную полуволну (рис. б), если этот компонент развернуть, то отрицательную составляющую (рис. в). Такое напряжение уже не будет переменным. Всё же оно не годится для питания серьёзных электроприборов. В нём наблюдаются моменты, когда ток совсем отсутствует. Применение четырёх диодов позволит получить постоянное напряжение без всяких прерываний (рис. г). Трёхфазные мосты выпрямляют по такому же методу. Однако они делают это одновременно с тремя синусоидами.
Выпрямитель
Полученное после диодного моста напряжение имеет форму синусоиды, у которой отрицательная составляющая отражена относительно оси времени. Проще говоря, оно имеет форму холмов и называется пульсирующим. Такое напряжение положительное. Не содержит моментов, когда ток не течёт. Но всё же оно нестабильное. Например, в точке «a» оно рано 0 вольт, а в «b» – имеет максимальное значение. Данный выпрямитель нельзя считать законченным.
Для решения этой проблемы требуется сглаживающий электролитический конденсатор. На плате он обычно располагается там же, где и диодная сборка. Ёмкость накапливает энергию в те моменты, когда она имеет пиковые значения (точка b), и отдаёт её в моменты провалов (a). На выходе получается прямая линия – полноценный постоянный ток, пригодный для питания последующих электронных компонентов, процессоров, микросхем и т.п.
Преимущества двухполупериодного диодного моста
Полный мост, также называемый двухполупериодным выпрямителем, по ряду характеристик лучше, чем просто одиночный диод. Объясняется это тем, что он даёт возможность:
- снизить подмагничивание трансформатора, после которого стоит двухполупериодный выпрямитель;
- снять с выхода напряжение с удвоенной частотой, которое в итоге проще сгладить;
- повысить КПД трансформатора, на вторичной обмотке которого установлен полный диодный мост.
Недостатки полного моста
У полноценного двухполупериодного моста имеются недостатки:
- Ток вынужден протекать не по одному диоду, а сразу по двум, включенным последовательно. Поэтому удваивается падение напряжения на выпрямительном элементе. Для маломощных мостов на кремниевых диодах оно может достигать 2 вольт. В мощных выпрямителях – порядка 10 В. Отсюда существенные потери мощности на выпрямляющем элементе и его повышенный нагрев.
- При выходе из строя одного и четырёх диодов мост продолжает работать. Данный дефект может быть незаметен без специальных замеров. Однако он создаёт риск более серьёзной поломки устройства, которое питается через неисправный мостик.
Конструкция
Схема любого выпрямительного моста включает в себя диоды. Они могут быть по отдельности распаяны на печатную плату или находиться в одном корпусе. Касаемо размера выпрямители бывают миниатюрными, например, импортные MB6S или советские КЦ405А. Последние в народе именуют «ка-цэшками» или «шоколадками».
Встречаются образцы с внушительными габаритами. Например, трёхфазный выпрямительный мост китайского производства. Прибор предназначен для токов в сотни ампер, поэтому имеет винтовой крепёж под силовые провода и плоскую металлическую теплопроводящую поверхность с отверстиями для фиксации на радиаторе охлаждения.
Маркировка выпрямителей
Не существует общепринятых правил, согласно которым производители маркируют свои диодные мосты. Каждый вправе называть своё изделие так, как считает нужным, т.е. по своей собственной номенклатуре.
Однако у большинства из этих деталей есть схожие признаки, помогающие визуально определить назначение их выводов. На фото трёхфазного моста (см. выше) отдельно выделен символ переменного тока – волнистая линия. Он указывает на то, что к этому контакту подключается входное синусоидальное напряжение. Также на некоторых моделях мостиков входные выводы помечаются буквами AC (Alternative Current), указывающими на переменный ток. При этом выходные контакты, с которых снимается постоянный ток, обозначаются символами DC (Direct Current) или традиционными «+» и «-». Дополнительно на некоторых выпрямителях со стороны плюса «подпилен» один из углов. Также на «+» может указывать и удлинённый вывод. Подобная маркировка свойственна многим электронным компонентам и называется ключом.
Диодный мостик своими руками
Чтобы самостоятельно собрать выпрямитель, понадобится 4 однотипных диода. При этом они должны подходить по обратному напряжению, максимальному току и рабочей частоте. Соединения нужно сделать в соответствии со схемой ниже. Между двумя катодами снимается положительное напряжение, между анодами – отрицательное. К точкам, в которых подключены разноимённые выводы диодов, подсоединяется источник переменного напряжения. Всю схему можно за пару минут спаять навесным монтажом или потрудиться и выполнить в виде небольшой печатной платы.
Дополнительная информация. Обратные напряжения диодов, включенных в последовательную цепь, складываются между собой.
Выбор типа сборки
Для каждой задачи существует свой оптимальный вариант выпрямительной диодной сборки. Все их можно условно разделить на 3 вида:
- Выпрямитель на одном диоде. Применяется в самых простых и дешёвых схемах, где нет к.л. требований к качеству выходного напряжения, как, например, в ночниках.
- Сдвоенный диод. Эти детали внешне похожи на транзисторы, ведь они выпускаются в таких же корпусах. Они также имеют 3 вывода. По сути, это два диода, помещённых в один корпус. Один из выводов – средний. Он может быть общим катодом или анодом внутренних диодов.
- Полноценный диодный мост. 4 детали в одном корпусе. Подходит для устройств с большими токами. Применяется в основном на входах и выходах различных блоков питания и зарядных устройств.
Дополнительная информация. Выпрямители используются и в автомобилях. Они нужны для преобразования идущего с генератора переменного напряжения в постоянное. Оно, в свою очередь, необходимо для зарядки аккумулятора. Обычный бензогенератор вырабатывает переменный ток.
Проверка элементов
В большинстве случаев для проверки выпаивать мостик из платы не требуется. Тестировать его следует точно так же, как 4 p-n перехода с подключением по схеме диодного моста. Данное измерение настолько распространено, что его возможность реализована в любом мультиметре. Прибор для теста нужно переключить в режим диодной прозвонки.
Падение напряжения в прямом направлении на исправном выпрямительном диоде составляет 500-700 мВ. В обратном – прибор отобразит «1». Сгоревшая деталь чаще всего показывает в обоих направлениях «0», т.е. короткое замыкание. Реже бывает полный обрыв элемента (также в обе стороны). Все замеры следует повторить для каждого входящего в состав моста диода. Итого 8 измерений, т.е. 4 в прямом направлении и 4 – в обратном. Если тестируется диод Шоттки, то этот параметр составляет 200-400 мВ.
Использование барьера Шоттки
Применение диода Шоттки оправдано в двух случаях. Во-первых, когда нужно выпрямить высокочастотный ток. Барьер Шоттки идеально подходит для подобной задачи, ведь он имеет низкую ёмкость перехода и, соответственно, является быстродействующим. Во-вторых, когда требуется выпрямить большой ток в десятки или сотни ампер. В этом случае деталь отлично себя показывает ввиду низкого падения напряжения и малого тепловыделения.
Диодные мосты в мире электроники играют роль согласующего элемента. С их помощью можно подключать устройства, требующие постоянный ток, к сети удобного для передачи переменного напряжения. Подобных устройств очень много в быту, они крайне важны для комфортной жизни человека.
Видео
Что такое диодный мост и как он работает?
Наряду с линейными устройствами в электрической цепи можно встретить и нелинейные полупроводниковые элементы, имеющие самый разнообразный функционал в составе электронной схемы. Среди полупроводниковых приборов особое место занимает диодный мост, выполняющий роль преобразователя переменного напряжения в постоянное. Хоть для этих целей с тем же успехом может применяться и обычный диод, но сфера их применения существенно ограничивается рабочими параметрами одного элемента. Решить недостатки единичной детали помогла диодная сборка из нескольких, существенно отличающихся характеристиками и принципом работы.
Устройство и принцип работы
Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.
Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.
Рис. 1. Принцип работы диодного моста
Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.
Поэтому работа выпрямительного устройства будет иметь такие этапы:
- На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
- Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
- Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
- Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.
В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.
Обозначение на схеме и маркировка
На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:
Рис. 2. Обозначение на схеме
Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.
Второй вариант наиболее распространен для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.
Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.
Разновидности диодных мостов
В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.
Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.
Рис. 3. Схема трехфазного диодного моста
Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга. Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:
Рис. 4. Напряжение выпрямленное трехфазным мостом
Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.
Технические характеристики
При выборе конкретного диодного моста для замены в выпрямительном блоке или для любой другой схемы важно хорошо ориентироваться в основных технических параметрах.
Среди таких характеристик наиболее значимыми для диодного моста являются:
- Амплитудное максимальное напряжение обратной полярности – это пороговое значение более которого уже произойдет необратимый процесс и полупроводник выйдет со строя. Обозначается как UАобр в отечественных моделях или Vrpm для зарубежных.
- Среднее обратное напряжение – представляет собой номинальное значение электрической величины, которое может прикладываться в процессе эксплуатации. Имеет обозначение Uобр в отечественных образцах или Vr(rms) для зарубежных диодных мостов.
- Средний выпрямленный ток – обозначает действующую величину электрического тока на выходе диодного моста. На устройствах указывается как Iпр или Io для моделей отечественного или зарубежного производства соответственно.
- Амплитудный выпрямленный ток – это максимальный ток на выходе выпрямителя, определяемый пиком полуволны на кривой, обозначается как Ifsm для пульсирующего тока на положительном и отрицательном выводе.
- Падение напряжения в прямой полярности – определяет потерю напряжения от собственного сопротивления диодного моста. На устройстве обозначается как Vfm.
Если вы хотите выбрать модель на замену, допустим в сети 220 В, то главный параметр для диодного моста обратный ток и напряжение. Рабочие характеристики должны значительно превышать номинал сети, к примеру, при напряжении 220 В – диодный мост должен выдерживать около 400 В. По току подойдет и меньший запас, но его также следует предусмотреть.
Преимущества и недостатки
Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:
- И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
- За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
- Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
- Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.
К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки. Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д. В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.
Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.
Практическое применение
На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.
Примеры схем с диодным мостом и их описание
Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере
Рис. 5. Схема зарядного устройства
Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.
Рис. 6. Схема карманного фонаря
На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.
Пример схемы сварочного агрегата
Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.