Как выбрать тепловое реле для трехфазного двигателя?

Как выбрать тепловое реле РТЛ. Выбор теплового реле для электродвигателя
Содержание
  1. Как выбрать тепловое реле для трехфазного двигателя?
  2. Выбор теплового реле для электродвигателя
  3. Выбор теплового реле по мощности двигателя
  4. Книги по электродвигателям
  5. Как выбрать тепловое реле для двигателя по мощности и току: разъясняем досконально
  6. Конструктивное исполнение тепловых реле
  7. Итак, начнем с самого сложного. Что делать, если паспортные данные двигателя не известны?
  8. Выбор теплового реле по мощности двигателя
  9. Как подобрать тепловое реле для электродвигателя 380в
  10. Тепловое реле для электродвигателя — принцип работы, устройство, как выбрать
  11. Опубликовано Артём в 02.06.2019 02.06.2019
  12. Порядок подбора теплового реле
  13. Об Авторе
  14. Александр Коваль
  15. Похожие записи
  16. Основные режимы работы электродвигателя
  17. Как правильно выбрать электродвигатель с учетом режима его работы?
  18. Как подобрать тепловое реле для защиты электродвигателя
  19. Соединение электродвигателя с насосом — часть 3 инструкции по эксплуатации электродвигателей
  20. Как выбрать реле
  21. Тепловой автоматический выключатель, встраиваемый в обмотки
  22. Как работает тепловое реле защиты электродвигателя
  23. 8 комментариев
  24. Выводы и полезное видео по теме
  25. Выводы и полезное видео по теме
  26. Как подобрать тепловое реле для электродвигателя 380в
  27. Конструктивное исполнение тепловых реле
  28. Тепловой автоматический выключатель, встраиваемый в обмотки
  29. Принцип работы приспособления
  30. Как подключить тепловое реле
  31. Выводы и полезное видео по теме
  32. Нюансы при установке прибора
  33. Трёхфазные твердотельные реле + основы применения приборов на практике
  34. Трёхфазные твердотельные реле (ТТР) – основы применения
  35. Трёхфазные твердотельные реле – определение и описание
  36. Способы коммутации на трёхфазные твердотельные приборы
  37. Стандарты безопасности для трёхфазных твердотельных реле
  38. Приборы ТТР для трехфазных асинхронных двигателей
  39. Пуск и остановка мотора твердотельным прибором ТТР
  40. Видеоролик — использование прибора под термо-резистивную нагрузку

Как выбрать тепловое реле для трехфазного двигателя?

Выбор теплового реле для электродвигателя

Тепловое реле РТЛ для электродвигателя

Тепловое реле служит для тепловой защиты электродвигателя. Реле защищает двигатель от перекоса фаз или пропадании фазы, от механической перегрузки и заклинивания ротора.

Тепловое реле двигателя, так же, как и защитный автомат, имеет время-токовую характеристику, которая показывает, что тепловое реле не может сработать при превышении тока уставки мгновенно.

Подробнее про эти характеристики – здесь.

Важно, что спасти от короткого замыкания тепловое реле не может – просто не успеет. Поэтому в цепь питания двигателя всегда перед пускателем ставят автоматический выключатель, предохраняющий от КЗ.

Во всех современных “теплушках” есть одна пара нормально открытых (НО, NO) контактов и одна пара нормально закрытых (НЗ, NC). Обычно схему питания контактора строят так, что при срабатывании теплового реле НЗ контакты разрывают цепь питания катушки контактора, а НО контакты замыкаются и включают цепь индикации аварии.

Тепловая защита электродвигателя заключается в том, что при прохождении через силовые контакты теплового реле тока двигателя нагревается специальная биметаллическая пластина, которая приводит в действие сигнальные контакты. Контакты слаботочные, и включаются в цепь управления пускателем.

При срабатывании реле необходимо устранить причину аварии, затем привести реле в исходное состояние. Для этого на корпусе имеется красная кнопка возврата, на которой напечатана буква R (Reset). В некоторых моделях возврат осуществляется автоматически.

Тепловое реле РТЛ. Контакты для механической и электрической фиксации в пускателе

Как правило, тепловое реле крепится непосредственно на выходные контакты пускателя. И без пускателя не используется. Соответственно, тепловое реле включено с двигателем последовательно.

Для различных вариантов пускателей необходимо передвинуть выводы (контакты) теплового реле для правильной фиксации.

На фото видно (слева), как рекомендовано передвинуть ножки для разных пускателей.

Фиксация также обеспечивается специальным крючочком, который зацепляется за пускатель.

Такие тепловые реле можно применять только для контакторов советских разработок типа ПМЛ, для других производителей тепловые реле РТЛ могут не подойти.

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей.

Номинальный
ток пускателя, А

Тип реле

Диапазон регулирования максимального тока, А

Мощность
электродвигателя, кВт

Распространенные марки тепловых реле – РТЛ и РТИ, которые по параметрам идентичны, и отличаются в основном креплением и конструкцией.

В интернете гуляет табличка выбора теплового реле двигателя по мощности, где подробно перечислены параметры тепловых реле серии РТЛ. Стоит сказать об ошибке – во второй строке внизу вместо “РТЛ-ЮООМ” следует читать “РТЛ-1000М”. Кто-то распознавал бездумно.

• Выбор теплового реле / Выбор электротеплового реле — таблица параметров, pdf, 34.01 kB, скачан: 6604 раз./

И ещё фото старенькой теплушки, фото новых легко найти в интернете.

Такое тепловое реле ставится на пускатель ПМЕ.

Подробно про схему подключения теплового реле и схему подключения пускателя к трехфазному двигателю рассказано в другой моей статье. Рекомендую.

Книги по электродвигателям

• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 6052 раз./

• Беспалов, Котеленец — Электрические машины / Рассмотрены трансформаторы и электрические машины, используемые в современной технике. Показана их решающая роль в генерации, распределении, преобразовании и утилизации электрической энергии. Даны основы теории, характеристики, режимы работы, примеры конструкций и применения электрических генераторов, трансформаторов и двигателей., pdf, 16.82 MB, скачан: 1823 раз./

• Каталог двигателей Электромаш / Асинхронные электродвигатели с короткозамкнутым ротором — каталог производителя, pdf, 3.13 MB, скачан: 1034 раз./

• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 877 раз./

• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 1811 раз./

• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1079 раз./

• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2068 раз./

• Таблица выбора теплового реле. / Выбор теплового реле., pdf, 34.01 kB, скачан: 3680 раз./

• Иноземцев Е.К. Ремонт асинхронных электродвигателей / Иноземцев Е.К. Ремонт асинхронных электродвигателей электростанций. Рассмотрены конструкция и техническая характеристика асинхронных электродвигателей серий А, АО. А2, А02,4А, АИ, 5А, 6А, А, КА, АДА, ДАН, АН, АД, 2 АС ВО, 4МТН, А2К, А2КП, ДАСК, ВРА, АВР, АВРМ, 2ВРМ, ЗВРМ, ВРПВ, АИУВ, ВРФВ, АВТ. Изложена технология ремонта электродвигателей и их узлов, разборочно-сборочных работ. Приведены приспособления для выполнения работ с учетом передовых методов ремонта и технологий. Рассмотрены вопросы сушки электродвигателей, а также электрических испытаний и измерения обмоток., djvu, 1.84 MB, скачан: 443 раз./

• Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором / Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором. 2000 — 72 с; ил. [Библиотечка электротехника, приложение к журналу «Энергетик», Вып. 7(19)]. Рассмотрены особенности применения трехфазного асинхронного двигателя в качестве конденсаторного, а также различные схемы включения. Даны простые соотношения для определения рабочей емкости конденсатора. Приведены основные технические данные трехфазных асинхронных двигателей серий КА и 4А (сельскохозяйственного назначения), а также конденсаторов различных типов., djvu, 1.84 MB, скачан: 545 раз./

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1289 раз./

Как выбрать тепловое реле для двигателя по мощности и току: разъясняем досконально

Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Состоит прибор из корпуса, нихромового нагревателя, биметаллической пластины, защелки, винта, рычага, подвижного контакта и кнопки возврата (+)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Тепловое реле ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Итак, начнем с самого сложного. Что делать, если паспортные данные двигателя не известны?

Для этого случая рекомендуем токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Читаем какой номинальный ток двигателя при подключении к сети 380 вольт (Iн). Этот ток, как мы видим на шильдике двигателя, Iн = 1,94 Ампера

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей.

Номинальный
ток пускателя, А

Тип реле

Диапазон регулирования максимального тока, А

Мощность
электродвигателя, кВт

Как подобрать тепловое реле для электродвигателя 380в

Тепловое реле для электродвигателя — принцип работы, устройство, как выбрать

Опубликовано Артём в 02.06.2019 02.06.2019

Для защиты электромоторов от перегрузок активно используются тепловые реле.

Хотя было создано довольно много видов этих приборов, область их применения практически аналогична.

При выборе теплового реле для электродвигателя необходимо знать особенности конструкции устройства, а также принцип его работы.

Начинающим электрикам, кроме этого, предстоит разобраться со схемами подключения прибора.

Порядок подбора теплового реле

Рассмотрим порядок подбора теплового реле на примере электродвигателя АИРЕ100S4. Фото шильдика электродвигателя приведено ниже.
Шаг 1. Определяем номинальный ток двигателя Iн. Этот ток указан на шильдике двигателя. В нашем примере этот ток равен 14 Ампер

Подобрать и купить электродвигатели Вы можете в магазине промышленного оборудования и материалов .

Об Авторе

Александр Коваль

Техническое образование и любознательность помогают докопаться до сути. Понятым делюсь с другими. Пишу статьи на блоги. Занимаюсь поставками электродвигателей, насосов, вентиляторов промышленным компаниям и организациям. На любой вопрос даю любой ответ. Шутка. На вопрос стараюсь дать правильный ответ в меру понимания.

Похожие записи

Основные режимы работы электродвигателя

28 декабря, 2013

Как правильно выбрать электродвигатель с учетом режима его работы?

22 августа, 2012

Как подобрать тепловое реле для защиты электродвигателя

27 октября, 2015

Соединение электродвигателя с насосом — часть 3 инструкции по эксплуатации электродвигателей

Как выбрать реле

Реле подбирается в зависимости от условий, в которых будет использоваться. При этом важно хорошо знать и понимать характеристики, которые указаны в техническом паспорте. Несоблюдение одного или нескольких из них может иметь неприятные последствия как для потребителя, так и для реле. Одним из важных значений, которое указывается для реле является номинальный ток. Имеется в виду сила тока потребления конкретного прибора, к которому будет подключаться реле. Эту цифру можно найти в технических характеристиках потребителя. Если реле будет попеременно применяться с различными приборами, тогда должен быть указан диапазон допустимой силы тока.

Реле могут использоваться как для однофазной, так и для трехфазной цепи, именно поэтому важно обращать внимание на то, какое напряжение указано: оно может быть 220 или 380 вольт. Если в паре с ТР планируется использовать пускатель, тогда особое внимание необходимо уделить количеству контактов. Кроме силы тока потребителя, важно знать его мощность, которая также учитывается при выборе определенной модели реле. Если включение реле планируется в трехфазную сеть, тогда лучше приобрести модуль, который способен обеспечить дополнительную защиту при перекосе фаз или прогорании проводников.

Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.

Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).

Как работает тепловое реле защиты электродвигателя

Общее устройство всех тепловых реле включает в себя одни и те же детали, отличающиеся лишь небольшими конструктивными особенностями. Основной элемент представляет собой чувствительную биметаллическую пластину, состоящую из двух металлических сплавов – железа с никелем и железа с латунью. Они соединяются друг с другом с помощью пайки и обладают различными коэффициентами теплового расширения.

Данный коэффициент указывает на степень удлинения металлической пластины при ее нагреве. Этот показатель составляет для латуни 18,7, а для сплава железа с никелем – 1,5. В результате, длина латуни во время нагревания увеличивается значительно быстрее, давая тем самым толчок для изгиба биметаллической пластины в свою сторону. Данное свойство лежит в основе работы всех тепловых реле.

Внутри корпуса прибора находятся биметаллическая пластина с нагревательным элементом, толкатель, исполнительная пластина и пружина замыкающего контакта. Температурный компенсатор состоит из пластины и регулировочного винта. Кроме того, тепловое реле оборудуется контактами, эксцентриком с движком уставки тока срабатывания и кнопкой возврата прибора в рабочее состояние.

8 комментариев

Спасибо за полезную статью.

Спасибо за подсказки по тепловому реле и то, как правильно выбрать тепловое реле для защиты двигателя

Спасибо за информацию кратко и все понятно.

Добрый день.
Являюсь «счастливым» обладателем однофазного двигателя китайского производства.
На шильдике указана можность 1.1 кВт и номинальный ток 9.7А. Реально в моих условиях потребляемый ток около 5А.
При этом стартовый ток кратковременно достигает 18А и более.

Вопрос: какие параметры пускателя и теплового реле необходимы в моем случае.

Здравствуйте, Евгений.
Пусковой ток раза в 3 превышает ток в рабочем режиме = поэтому 18А при пуске нормально. Тем более что такой ток течет секунды (если мотор не запускается в режиме тяжелого пуска — т.е. под нагрузкой). Тепловые реле имеют инерцию — поэтому здесь все должно нормально работать.

Мощность однофазного мотора P = U * I * cos ф * КПД Подставьте данные из шильдика — у вас должно получиться в районе 1100 Вт. Если что то получаеться существенно другое — значит что то не так: либо мотор либо шильдик либо калькулятор

Если ваш мотор недогружен и близок к холостому ходу — ток холостого хода будет процентов 60 от номинального тока. Может этим и обясняются ваши 5А.

Если надумаете ставить тепловое реле — то ставьте на пределы номинального тока т.е. на 9,7А предварительно проверив формулу.

Еще оргвопрос: Если будете работать сами на своем оборудовании — маловероятно, что вы доведете СВОЙ мотор до перегрева. Мы настоятельно рекомедуем ставить тепловую защиту в случае использования наемных рабочих — оборудование ведь не ихнее.
Удачи!

Спасибо, огромное за такой подробный ответ.

А на какой ток ориентироваться при подборе контактора? Тоже на номинал? Переживаю не повредит ли такому контактору токи в 18 ампер и более, даже кратковременные…

Выводы и полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных моделях подключения теплового реле одинаков. Для лучшей ориентации в схемах с отличающимися друг от друга цифровыми и буквенными обозначениями важно его усвоить. В идеале все работы должен выполнять рабочий, имеющий допуск к работе в условиях высокого напряжения.

Кол-во блоков: 11 | Общее кол-во символов: 15896
Количество использованных доноров: 4
Информация по каждому донору:

Выводы и полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных моделях подключения теплового реле одинаков. Для лучшей ориентации в схемах с отличающимися друг от друга цифровыми и буквенными обозначениями важно его усвоить. В идеале все работы должен выполнять рабочий, имеющий допуск к работе в условиях высокого напряжения.

Как подобрать тепловое реле для электродвигателя 380в

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.


Состоит прибор из корпуса, нихромового нагревателя, биметаллической пластины, защелки, винта, рычага, подвижного контакта и кнопки возврата (+)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.


Тепловое реле ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Тепловой автоматический выключатель, встраиваемый в обмотки

Устройства тепловой защиты могут быть также встроены в обмотки, см. иллюстрацию.

Они действуют как сетевой выключатель как для однофазных, так и для трёхфазных электродвигателей. В однофазных электродвигателях мощностью до 1,1 кВт устройство тепловой защиты устанавливается непосредственно в главном контуре, чтобы оно выполняло функцию устройства защиты на обмотке. Кликсон и Термик — примеры тепловых автоматических выключателей. Эти устройства называют также PTO (Protection Thermique a Ouverture).



Принцип работы приспособления

Выполняя защитную функцию, автоматический выключатель разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.

В схеме перед термореле находится магнитный пускатель. Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.

Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.

Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.


Так как составные части биметаллической пластины выполнены из пары разнородных металлов, имеющих неодинаковые коэффициенты расширения, нагрев заставляет ее изгибаться и взаимодействовать с контактами

Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании тепловых реле.

При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.


По такой схеме функционирует тепловое реле. Незакрепленный конец биметаллической пластины при ее прогибе воздействует на контакты термореле (+)

Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.

Как подключить тепловое реле

Замкнутый контакт (normal connected), при помощи которого производят подключение теплового модуля к магнитному пускателю, обозначают NC или НЗ, что расшифровывается, как нормально замкнутый. Буквенным сочетанием NO обозначают нормально разомкнутый контакт.

В несложной схеме он применяется для подачи сигнала, свидетельствующего о срабатывании защиты двигателя из-за превышения пороговой температуры.

При внедрении в сложные схемы управления он способен формировать в аварийном порядке сигнал выведения из рабочего состояния конвейера.


Тепловое реле размещают за контакторами, но перед электродвигателем. Подсоединение контакта normal connectde к кнопке «Стоп» на пульте управления осуществляют по последовательной схеме (+)

Обозначение клемм контакторов диктует ГОСТ: нормально замкнутый — 95-96, нормально разомкнутый — 97-98. К первой паре подключают пускатель, вторую используют для схем сигнализации. Так как двигатель и тепловое реле нужно защищать от КЗ, цепь должна содержать автомат защиты.

Схема прибора включает кнопки «Тест» и «Стоп» или «Сброс». С помощью первой проверяют работоспособность, а второй — отключают защиту вручную.

При помощи переключателя поворотного взвода после включения защиты вновь запускают электродвигатель. На стеклянную крышку изделия наносят маркировку и пломбируют.

Если исходить из типа подключения, можно выделить две большие группы термореле:

  • первая группа – устройства, монтируемые за магнитным пускателем и те, что подключаются с использованием перемычек;
  • вторая группа – приборы, устанавливаемые на контактор пускателя непосредственно.

В последнем случае при запуске основная нагрузка приходится на контактор. Здесь тепловой модуль оснащен медными контактами, подключенными к входам пускателя непосредственно.


Схема теплового реле. На нее нанесены обозначения управляющих элементов и выводов. У разных моделей эти обозначения могут отличаться (+)

К ТР подключают провода от двигателя. Само реле в такой схеме представляет промежуточный узел, анализирующий ток, протекающий транзитом к двигателю от магнитного пускателя.

Выводы и полезное видео по теме

Схема эффективной защиты двигателя:

Составные части теплового реле:

Принцип взаимодействия различных приборов в разных моделях подключения теплового реле одинаков. Для лучшей ориентации в схемах с отличающимися друг от друга цифровыми и буквенными обозначениями важно его усвоить. В идеале все работы должен выполнять рабочий, имеющий допуск к работе в условиях высокого напряжения.

Кол-во блоков: 11 | Общее кол-во символов: 15896 Количество использованных доноров: 4 Информация по каждому донору:

Нюансы при установке прибора

На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.

Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.

Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:

  1. При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
  2. Защиту монтировать в одном помещении с защищаемым объектом.
  3. Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
  4. Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
  5. Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.

Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.


Ток в тепловом реле движется последовательно через его нагревательный модуль и дальше к двигателю . С обмоткой пускателя прибор соединяют дополнительные контакты (+)

При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.

Спасибо за полезную статью.

Спасибо за подсказки по тепловому реле и то, как правильно выбрать тепловое реле для защиты двигателя

Спасибо за информацию кратко и все понятно.

Добрый день. Являюсь «счастливым» обладателем однофазного двигателя китайского производства. На шильдике указана можность 1.1 кВт и номинальный ток 9.7А. Реально в моих условиях потребляемый ток около 5А. При этом стартовый ток кратковременно достигает 18А и более.

Вопрос: какие параметры пускателя и теплового реле необходимы в моем случае.

Здравствуйте, Евгений. Пусковой ток раза в 3 превышает ток в рабочем режиме = поэтому 18А при пуске нормально. Тем более что такой ток течет секунды (если мотор не запускается в режиме тяжелого пуска — т.е. под нагрузкой). Тепловые реле имеют инерцию — поэтому здесь все должно нормально работать.

Мощность однофазного мотора P = U * I * cos ф * КПД Подставьте данные из шильдика — у вас должно получиться в районе 1100 Вт. Если что то получаеться существенно другое — значит что то не так: либо мотор либо шильдик либо калькулятор

Трёхфазные твердотельные реле + основы применения приборов на практике

Главная страница » Трёхфазные твердотельные реле + основы применения приборов на практике

Твердотельные реле находят место в широком спектре применений для переключения электрических нагрузок, включая профессиональное оборудование, к примеру — системы отопления, вентиляции и кондиционирования воздуха. Однако для лучшего понимания относительно того, как применять трёхфазные твердотельные реле и управлять, требуются отдельные сведения. В частности, сведения о разделении нагрузок на две основные категории: нагрев и управление движением.

Трёхфазные твердотельные реле (ТТР) – основы применения

Очевидно, что обозначенные применения (резистивный элемент / электродвигатель) далеко не всеобъемлющая группа, поскольку существует ряд других применений, выходящих за рамки указанных двух категорий. Например — системы освещения и распределения электроэнергии.

Однако большинство инженеров-проектировщиков, использующих трёхфазные твердотельные реле, применяют устройства именно к одному из двух указанных общих типов трёхфазных систем. Основное внимание, как показывает картинка ниже, уделяется резистивным элементам и электродвигателям.

Блок-схема упрощённого вида управляемыми приборами ТТР: слева – термически-резистивная нагрузка (ТРН); справа – моторная нагрузка; ТТР – трёхфазное твердотельное реле; Тн – нагрузочный ток; Нн – нагрузочное напряжение; У – управляющий сигнал

Несмотря на то, что каждое применение индивидуально и требует особой проверки, сосредоточение внимания на этих двух основных категориях позволяет обобщить характеристики. Также обобщаются последующие требования, предъявляемые к трёхфазным твердотельным реле, используемым для выполнения функций переключения.

Более того, ограничение внимания мощными системами, использующими трёхфазные сети для питания систем, охватывает некоторые из наиболее требовательных коммерческих и промышленных условий, в которых сегодня используются трёхфазные твердотельные реле.

Трёхфазные твердотельные реле – определение и описание

Исполнение устройства под три фазы, по сути, представлено отдельными однофазными реле, заключёнными в одном корпусе с общим входом. Соответственно, все три отдельных устройства питаются током одновременно.

Инженеры-электрики, кстати заметить, нередко используют три отдельных однофазных устройства для переключения питания на трёхфазной системе.

Обычно это делается по желанию или когда по тем или иным причинам не представляется возможным применение именно трёхфазного твердотельного реле.

Однако более распространённым и упрощённым подходом следует рассматривать использование трехфазного твердотельного реле для обеспечения функции переключения.

Такой подход упрощает электромонтаж и обычно уменьшает общую потребность в пространстве внутри конструкционной панели.

Пример целой сборки на основе ТТР с коммутацией на три фазы – своего рода интеллектуальный регулятор напряжения, построенный из десятка приборов, работающих совместно

Основными характеристиками твердотельных реле — однофазных или трёхфазных, являются:

  • бесконтактное включение и выключение, что означает отсутствие дуги, дребезга контактов или акустического шума;
  • высокая скорость переключения;
  • долговечность работы;
  • низкие требования к входной мощности управления;
  • отключение при нулевом токе, что существенно минимизирует электрические переходные процессы, особенно при переключении индуктивных систем;
  • включение при нулевом напряжении, что минимизирует скачки тока в обмотках и связанные переходные процессы.

Трёхфазные твердотельные реле предназначены для управления трёхфазными нагрузками переменного тока, которые в противном случае могли бы переключаться при помощи других – электромеханических, ртутных или иных контакторов.

Способы коммутации на трёхфазные твердотельные приборы

Для трехфазного резистивного нагрева обычно используются трёхфазные твердотельные реле с переходом через нуль. Эти версии устройств переключают питание нагрузки в точке пересечения нулевого напряжения каждой фазы, минимизируют пусковые токи.

Приборы статичного включения рекомендуются для переключения индуктивных нагрузок — электродвигателей, компрессоров, трансформаторов, где желательно включать три фазы одним моментом. Все приборы переменного тока (за исключением специальных версий, построенных с полевыми транзисторами) отключают выход при нулевом токе.

Отключение проходит независимо от того, управляются ли приборы нулевым напряжением или статичным включением. Таким образом, уменьшаются переходные процессы, вызванные открытием нагрузки посредством магнитного поля, которое сводится к нулю.

Пример радиаторной сборки под прибор ТТР на три фазы, предназначенной для рассеивания тепла, выделяемого схемой при максимальных токовых нагрузках

При включении твердотельного реле в трёхфазные схемы необходимо учитывать: рассеивание тепловой мощности прибора по причине потерь в выходных силовых полупроводниках. Этот момент нередко требует использования внешних радиаторов (теплоотводов) для поддержания допустимой рабочей температуры.

Электрические переходные процессы, передаваемые по линиям электропередач или создаваемые переключением реактивных нагрузок, могут потребовать дополнительной защиты от переходных процессов. Также приходится учитывать выбор включения нулевого или ненулевого напряжения в зависимости от типа нагрузки.

Стандарты безопасности для трёхфазных твердотельных реле

Наиболее распространённые номинальные категории относятся к применениям для резистивных нагрузок и электродвигателей. Основное различие между этими двумя номиналами заключается в токах.

Трёхфазные твердотельные реле для электродвигателей необходимо рассчитывать на работу, как с током заторможенного двигателя, так и с током полной нагрузки.

Таблица ниже показывает три наиболее распространённых стандарта под трёхфазные твердотельные реле для работы с электродвигателями.

Таблица стандартов ТТР под номинальные моторные нагрузки

Стандарты Классификация
UL508 Контроллер электродвигателя
IEC62314 Моторная нагрузка, LC B
IEC 60947-4-2 Контроллер электродвигателя, AC-53a

Стандарты, отмеченные таблицей, требуют, чтобы переключатели, предназначенные для управления нагрузкой электродвигателя, выдерживали токи полной нагрузки. В результате, конкретный прибор будет иметь разные номинальные значения тока для резистивных нагрузок или нагрузок двигателя.

По сути, номинальная резистивная нагрузка трёхфазного твердотельного реле снижается, когда имеет место применение к нагрузкам двигателя. Например, твердотельный прибор ТТР, способный выдерживать резистивный ток 50А, фактически рассчитывается как ТТР мощностью 17А, при использовании в системах управления электродвигателем.

Приборы ТТР для трехфазных асинхронных двигателей

Исторически наиболее распространенными устройствами, используемыми для переключения мощности на асинхронные двигатели, являются электромеханические реле и контакторы. Однако по мере роста спроса на улучшенные характеристики и надёжность работы, трёхфазные твердотельные реле находят всё большее применение.

Как и в случаях с резистивной нагрузкой, управление электродвигателем может быть выполнено при помощи:

  1. Трёх отдельных ТТР,
  2. Одного трёхфазного прибора.
  3. Двух (или одного сдвоенного) ТТР, если это позволяет спецификация.

Явными преимуществами твердотельных реле для управления трёхфазным асинхронным двигателем отмечаются:

  • исключение механической усталости конструкции;
  • работа без контакта, без шума, без дуги;
  • высокоскоростное переключение;
  • низкая входная мощность управления;
  • отсутствие катушек индуктивности;
  • отключение нагрузки при нулевом токе;
  • долгий срок службы в отличие от механических реле и контакторов;
  • изоляция входа / выход до 4000В переменного тока;
  • полное соответствие директиве по ограничению вредных веществ.

Пуск и остановка мотора твердотельным прибором ТТР

Большинство применений трехфазных электродвигателей ограничиваются только функциями включения / выключения. Например, промышленный вентилятор обычно работает только в одном направлении, обеспечивая циркуляцию воздуха, поэтому мотор вентилятора достаточно только включать и выключать.

Компрессор — еще один пример, когда для правильной работы двигателя просто требуется подключение к трём фазам цепи питания переменного тока. Для таких применений обычно используется простое трёхфазное твердотельное реле, контактор или пускатель для подачи питания одновременно на все три обмотки статора мотора. Используется один входной сигнал управляющий контактором.

Варианты ТТР для реализации управления асинхронным двигателем с помощью монтируемых на панели приборов, дополненных охлаждающим радиатором

Коэффициент мощности для нагрузок асинхронных двигателей имеет довольно низкое значение ( Критерии выбора приборов для управления электродвигателями

Условия переходного тока также необходимо учитывать при выборе трёхфазных твердотельных реле для использования с электродвигателями. В зависимости от размера мотора и нагрузки, приложенной к статору, пусковой ток при первом включении может в 5-7 раз превышать нормальный рабочий ток.

Эта перегрузка, потенциально достигающая значения тока заторможенного ротора двигателя, будет постепенно уменьшаться до номинального значения тока полной нагрузки. Происходит это в течение нескольких циклов переменного тока по мере того, как электродвигатель начинает вращаться. Однако применяемое реле и соединения должны соответствовать перегрузкам, возникающим в процессе запуска.

Также необходимо учитывать возможность остановки электродвигателя при определённых условиях, когда линейный ток будет равен или больше тока заторможенного ротора. В этом случае необходимо использовать защиту от перегрузки по току, как твердотельного прибора ТТР, так и самого электродвигателя.

Для надежности и безопасности рекомендуется обеспечить защиту от переходных процессов для всех твердотельных реле, управляющих трёхфазными асинхронными моторами. Такая защита может быть доступна внутри прибора ТТР или применяться внешним модулем.

Чаще всего используются варисторы, хорошо рассеивающие мощность, но несколько медленно реагирующие на быстрые переходные процессы. Однако двунаправленные диодные ограничители бросков напряжения (TVS-диоды) обеспечивают оптимальные характеристики для быстрых переходных процессов, несмотря на более низкие показатели рассеяния мощности, чем у варисторов на основе окиси металла.

Видеоролик — использование прибора под термо-резистивную нагрузку

На виде, представленное ниже, демонстрируется практическое применение прибора, в частности, для управления термо-резистивной нагрузкой (электрическими нагревателями). Внедряя в схему трёхфазные твердотельные реле, можно эффективнее управлять электрическими ТЭН.

Как правило, современные схемные решения предполагают использование приборов совместно с цифровыми микроконтроллерами, что позволяет полностью автоматизировать процесс работы.

Для любых предложений по сайту: [email protected]