Кто изобрел трехфазную систему переменного тока?

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Кто изобрел трехфазную систему переменного тока?

Трёхфазный ток. Преимущества при генерации и использовании.

Преимущества трёхфазного тока очевидны только специалистам электрикам. Что такое трехфазный ток для обывателя представляется весьма смутно. Давайте развеем неопределенность.

Содержание статьи

  • Трехфазный переменный ток
  • Откуда вообще появилось понятие переменный ток?
  • Выводы: преимущества трёхфазной системы

Трехфазный переменный ток

Большинство людей, за исключением специалистов — электриков, имеют весьма смутное представление, что такое так называемый «трёхфазный» переменный ток, да и в понятиях, что такое сила тока, напряжение и электрический потенциал, а также мощность, — часто путаются.

Попытаемся простым языком дать начальные понятия об этом. Для этого обратимся к аналогиям. Начнём с простейшей – протекания постоянного тока в проводниках. Его можно сравнить с водным потоком в природе. Вода, как известно, всегда течёт от более высокой точки поверхности к более низкой. Всегда выбирает самый экономичный (наикратчайший) путь. Аналогия с протеканием тока – полнейшая. Причём количество воды протекающей в единицу времени через какое-то сечение потока будет аналогично силе тока в электрической цепи. Высота любой точки русла реки относительно нулевой точки – уровня моря – будет соответствовать электрическому потенциалу любой точки цепи. А разница в высоте любых двух точек реки будет соответствовать напряжению между двумя точками цепи.

Используя эту аналогию можно легко представить в уме законы протекания постоянного электрического тока в цепи. Чем выше напряжение – перепад высот, тем больше скорость потока, и, следовательно, количество воды протекающей по реке в единицу времени.

Водный поток, точно так же как электрический ток при своём движении испытывает сопротивление русла – по каменистому руслу вода будет протекать бурно, меняя направление, немного нагреваясь от этого (бурные потоки даже в сильные морозы не замерзают вследствие нагрева от сопротивления русла). В гладком канале или трубе вода потечёт быстро и в итоге в единицу времени канал пропустит гораздо больше воды, чем извилистое и каменистое русло. Сопротивление потоку воды полностью аналогично электрическому сопротивлению в цепи.

Теперь представим закрытую бутылку, в которой налито немного воды. Если мы начнём эту бутылку вращать вокруг поперечной оси, то вода в ней будет перетекать попеременно от горлышка к донышку и наоборот. Это представление – аналогия переменному току. Казалось бы, одна и та же вода перетекает туда-сюда и что? Тем не менее, этот переменный поток воды способен совершать работу.

Откуда вообще появилось понятие переменный ток? к содержанию

Да с тех самых пор, когда человечество, узнав, что перемещение магнита вблизи проводника вызывает электрический ток в проводнике. Именно движение магнита вызывает ток, если магнит положить рядом с проводом и не двигать – никакого тока в проводнике это не вызовет. Далее, мы хотим получить (генерировать) в проводнике ток, чтобы использовать его в дальнейшем для каких-либо целей. Для этого изготовим катушку из медного провода и начнём возле неё двигать магнит. Магнит можно передвигать возле катушки как угодно – двигать по прямой туда-сюда, но, чтобы не двигать магнит руками, создать такой механизм технически сложнее, чем просто начать его вращать около катушки, аналогично вращению бутылки с водой из предыдущего примера. Вот именно таким образом — по техническим причинам — мы и получили синусоидальный переменный ток, используемый ныне повсеместно. Синусоида – это развёрнутое во времени описание вращения.

В дальнейшем оказалось, что законы протекания переменного тока в цепи отличаются от протекания постоянного тока. Например, для протекания постоянного тока сопротивление катушки равно просто омическому сопротивлению проводов. А для переменного тока – сопротивление катушки из проводов значительно увеличивается из-за появления, так называемого индуктивного сопротивления. Постоянный ток через заряженный конденсатор не проходит, для него конденсатор – разрыв цепи. А переменный ток способен свободно протекать через конденсатор с некоторым сопротивлением. Далее выяснилось, что переменный ток может быть преобразован с помощью трансформаторов в переменный ток с другими напряжением или силой тока. Постоянный ток такой трансформации не поддаётся и, если мы включим любой трансформатор в сеть постоянного тока (что делать категорически нельзя), то он неизбежно сгорит, так как постоянному току будет сопротивляться только омическое сопротивление провода, которое делается как можно меньше, и через первичную обмотку потечёт большой ток в режиме короткого замыкания.

Заметим также, что электродвигатели могут быть созданы для работы и от постоянного тока, и от переменного тока. Но разница между ними такая – электродвигатели постоянного тока сложнее в изготовлении, но зато позволяют плавно изменять скорость вращения обычным регулирующим силу тока реостатом. А электродвигатели переменного тока гораздо проще и дешевле в изготовлении, но вращаются только с одной, обусловленной конструкцией скоростью. Поэтому в практике широко применяются и те, и другие. В зависимости от назначения. Для целей управления и регулирования применяются двигатели постоянного тока, а в качестве силовых установок – двигатели переменного тока.

Далее конструкторская мысль изобретателя генератора двигалась примерно в таком направлении – если удобнее всего для генерации тока использовать вращение магнита рядом с катушкой, то почему бы вместо одной катушки генератора не расположить вокруг вращающегося магнита несколько катушек (места-то вокруг вон сколько)?

Получится сразу же, как бы несколько генераторов, работающих от одного вращающегося магнита. Причём переменный ток в катушках будет отличаться по фазе – максимум тока в последующих катушках будет несколько запаздывать относительно предыдущих. То есть синусоиды тока, если их графически изобразить, будут, как бы между собой, сдвинуты. Это важное свойство – сдвиг фаз, о котором мы расскажем ниже.

Примерно так рассуждая, американский изобретатель Никола Тесла и изобрёл сначала переменный ток, а затем и трёхфазную систему генерации тока с шестью проводами. Он расположил три катушки вокруг магнита на равном расстоянии под углами 120 градусов, если за центр углов принять ось вращения магнита.

(Число катушек (фаз) вообще-то может быть любым, но для получения всех тех преимуществ, что даёт многофазная система генерации тока, минимально достаточно трёх).

Далее русский учёный электротехник Михаил Осипович Доливо-Добровольский развил изобретение Н. Тесла, впервые предложив трёх — и четырёхпроводную систему передачи трёхфазного переменного тока. Он предложил соединить один конец всех трёх обмоток генератора в одну точку и передавать электроэнергию всего по четырём проводам. (Экономия на дорогих цветных металлах существенная). Оказалось, что при симметричной нагрузке каждой фазы (равным сопротивлением) ток в этом общем проводе равняется нулю. Потому что при суммировании (алгебраическом, с учётом знаков) сдвинутых по фазе на 120 градусов токов они взаимно уничтожаются. Этот общий провод так и назвали – нулевой. Поскольку ток в нём возникает только при неравномерности нагрузок фаз и численно он небольшой, гораздо меньше фазных токов, то представилась возможность использовать в качестве «нулевого» провод меньшего сечения, чем для фазных проводов.

По этой же самой причине (сдвиг фаз на 120 градусов) трехфазные трансформаторы получились значительно менее материалоёмкими, так как в магнитопроводе трансформатора происходит взаимопоглощение магнитных потоков и его можно делать с меньшим сечением.

Сегодня трёхфазная система электроснабжения осуществляется четырьмя проводами, три из них называются фазными и обозначаются латинскими буквами: на генераторе — А, В и С, у потребителя — L1, L2 и L3. Нулевой провод так и обозначается – 0.

Напряжение между нулевым проводом и любым из фазных проводов называется – фазным и составляет в сетях потребителей – 220 вольт.

Между фазными проводами тоже существует напряжение, причём значительно выше, чем фазное напряжение. Это напряжение называется линейным и составляет в цепях потребителей 380 вольт. Почему же оно больше фазного? Да всё это из-за сдвига фаз на 120 градусов. Поэтому, если на одном проводе, к примеру, в данный момент времени потенциал равен плюс 200 вольт, то на другом фазном проводе в этот же момент времени потенциал будет минус 180 вольт. Напряжение – это разность потенциалов, то есть оно будет + 200 – (-180)=+380 В.

Возникает вопрос, если по нулевому проводу ток не протекает, то нельзя ли его вообще убрать. Можно. И мы получим трёхпроводную систему электроснабжения. С соединением потребителей так называемым «треугольником» — между фазными проводами. Однако нужно заметить, что при неравномерной нагрузке в сторонах «треугольника» на генератор будут действовать разрушающие его нагрузки, поэтому данную систему можно применять при огромном количестве потребителей, когда неравномерности нагрузок нивелируются. Передача электроэнергии от больших электростанций при высоких фазных и линейных напряжениях (сотни тысяч вольт) так и осуществляются. Почему же применяется такое высокое напряжение. Ответ простой – чтобы уменьшить потери в проводах на нагрев. Так как нагрев проводов (потери энергии) пропорционален квадрату протекающего тока, то желательно чтобы протекающий ток был минимален. Ну а для передачи необходимой мощности при минимальном токе нужно повышать напряжение. Линии электропередач (ЛЭП) так и обозначаются, к примеру, ЛЭП – 500 – это линия электропередачи под напряжением 500 киловольт.

Кстати потери в проводах ЛЭП можно ещё более снизить, применяя передачу постоянного тока высокого напряжения (перестаёт действовать емкостная составляющая потерь, действующая между проводами), проводились даже такие эксперименты, но широкого распространения пока такая система не получила, видимо вследствие большей экономии в проводах при трёхфазной системе генерации.

Выводы: преимущества трёхфазной системы к содержанию

В заключение статьи подведём итоги, – какие же преимущества даёт трёхфазная система генерации и электроснабжения?

  1. Экономия на количестве проводов, необходимых для передачи электроэнергии. Учитывая немалые расстояния (сотни и тысячи километров) и то, что для проводов используют цветные металлы с малым удельным электрическим сопротивлением, экономия получается весьма существенной.
  2. Трёхфазные трансформаторы, при равной мощности с однофазными, имеют значительно меньшие размеры магнитопровода. Что позволяет получить существенную экономию.
  3. Очень важно, что трёхфазная система передачи электроэнергии создаёт при подключении потребителя к трём фазам как бы вращающееся электромагнитное поле. Опять-таки, вследствие сдвига фаз. Это свойство позволило создать чрезвычайно простые и надёжные трёхфазные электродвигатели, у которых нет коллектора, а ротор, по сути, представляет собой простую «болванку» в подшипниках, к которой не нужно подсоединять никакие провода. (На самом деле конструкция короткозамкнутого ротора имеет свои особенности и вовсе не болванка) Это так называемые трёхфазные асинхронные электродвигатели с короткозамкнутым ротором. Очень широко распространённые сегодня в качестве силовых установок. Замечательное свойство таких двигателей – это возможность менять направление вращения ротора на обратное простым переключением двух любых фазных проводов.
  4. Возможность получения в трёхфазных сетях двух рабочих напряжений. Другими словами менять мощность электродвигателя или нагревательной установки путём простого переключения питающих проводов.
  5. Возможность значительного уменьшения мерцаний и стробоскопического эффекта светильников на люминисцентных лампах путём размещения в светильнике трёх ламп, питающихся от разных фаз.

Благодаря этим преимуществам трёхфазные системы электроснабжения получили широчайшее распространение в мире.

Трёхфазный ток

Трёхфазный ток – вид сигнала, идущий минимум по трём проводам, причём частота по каждой ветке одинакова, а фазы равноудалены друг от друга (на 120 градусов).

Сложный путь трёхфазного тока

Общеизвестно, что теорию Араго о вращающемся магнитном поле первым сумел реализовать на практике Никола Тесла. Озарение пришло внезапно, во время прогулки с товарищем на природе. Взяв патент, Тесла одновременно заложил в документ вето на использование любого количества фаз, большего единицы. Потому русский учёный Доливо-Добровольский, добровольно сбежавший в немецкую компанию AEG, не смог приобрести патент на собственный трёхфазный двигатель…

Этот исторический экскурс сделан, чтобы читающий понял, насколько неисповедимы пути Господни. Как витиевато пролегла судьба молодого Теслы, подарившего – и это сказано без преувеличения – миру переменный, включая трёхфазный, ток. А вдобавок – очертил примерные области изменения частоты и напряжения. Без гения Теслы, возможно, сегодня продолжалось бы использование аккумуляторов. Понятно, что технический прогресс без переменного тока не представлялся возможным.

Араго и вращающееся магнитное поле

Большинство современных изобретений базируется на открытиях, сделанных англичанами и французами в первой половине XIX века. Метрическая система задумана Лапласом, занимавшим важный пост в Академии ещё до Бонапарта. В основу СИ заложена длина, составляющая десятимиллионную долю от четверти Парижского меридиана (дуга, проходящая через магнитные Земли, расположение истинных оставалось неизвестным).

Получение магнитного поля

Выполняя эту задачу, Араго отправился первоначально в Испанию, чтобы вести измерения. Сделаем акцент на простом факте: времена стояли неспокойные. Ко времени путешествия Араго относится факт сдачи в плен на территории Испании 22-х-тысячной армии под командованием Дюпона. В разрез с условиями капитуляции сыны Аррагона отправили французов – после долгих мытарств – на безлюдный остров, где содержали в ужасающих условиях. В итоге, на родину вернулась лишь четверть, а Дюпона император Наполеон заточил в замок, ужаснейшую тюрьму Франции.

Араго многократно за непродолжительный срок длительностью в три года оказывался на волосок от смерти и неизменно терпеливо продолжал выполнять работы по измерению меридиана. Нюанс – Лаплас доказал изменение размеров Земного шара согласно движению Луны. Нельзя в точности считать общепринятый ныне метр (от греч. – эталон, мера) научно объяснённой мерой длины. А копии из специального сплава хранятся в особенных условиях. Однако в США, Британии и ряде прочих странах поныне используется ярд, точное происхождение единицы доподлинно неизвестно.

Араго одним из первых признает величественность работ в электричестве Эрстеда и Вольты, в общих словах утверждая, что указанные два человека заложили фундамент для постройки нового здания на протяжении веков. Сообразуясь с идеями Лапласа, подхваченными Швейггером, Араго начинает экспериментировать с первыми катушками индуктивности и быстро находит новое направление. Речь идёт об индукции. Предстоит прожить 8 лет до опытов Майкла Фарадея, а Араго совместно с Фуко демонстрирует Академии взаимное влияние стрелки компаса и вращающегося медного диска – металла, не относящегося к железу и сплавам.

Значит, первый асинхронный двигатель появился задолго до патентования 1 мая 1888 году (US381968 A) Николой Тесла синхронной машины переменного тока. Араго открыл вихревые токи Фуко, давшие грядущим поколениям сотни идей. Майкла Фарадея считают отцом коллекторных двигателей. О последнем читайте в заметке о законе электромагнитной индукции. Вначале кажется, что двигатель у Фарадея синхронный, поскольку используется постоянный магнит, но мнение ошибочно. В дальнейшем развитие идеи привело к появлению скользящих контактов, меняющих полярность полюсов обмоток, что уже прямиком ведёт к распределительному коллектору.

Никола Тесла и переменный ток

Изложение событий, связанных с Николой Тесла, ведётся по Первой отечественной биографии в авторстве Ржонсницкого. Как свидетельствует писатель, на исходе 1881 года изобретателя поразил неизвестный недуг, сопровождающийся необычными симптомами:

  1. Чувства обострились настолько, что Тесла слышал движение повозки по улице и ощущал производимые в доме вибрации.
  2. Лёгкое прикосновение казалось ударом.
  3. Зрение позволяло видеть даже в ночное время.
  4. Шёпот казался криком.

В описанное время сознание инженера (связная компания в Будапеште) работало над задачей создания двигателя переменного тока. Как предполагалось, избавление от симптоматики произошло внезапно, причина осталась необъяснимой. Выздоравливая, февральским вечером Тесла прогуливался в парке с бывшим одноклассником Сцигети, цитировал любимых поэтов, к примеру, Гёте, вместе любовались картинами природы, закатом. Произнеся очередной куплет запомнившегося стихотворения, Никола осознал, что сложная техническая задача решена.

Причём в довесок подсознание подсказало ему методику реверса вала. В автобиографии Тесла отмечал, что быстро сделал набросок будущей конструкции. Таким образом, изобретение относится к 1882 году.

Не полагаясь на бытующее мнение, что Доливо-Добровольский внёс большой вклад в развитие трёхфазного тока, это не слишком соответствует истине. В доказательство по тексту обзора приводится кастомизированное изображение из патента Николы Тесла. Видно, что на статоре и роторе по шесть полюсов. Доливо-Добровольский отметил превосходство трёх фаз над двумя. В этом большая заслуга учёного, как и изобретение «беличьей клетки» ротора асинхронного двигателя. Но трёхфазный ток и число фаз, превышающее единицу, введены в жизнь Николой Тесла. Аналогичным занимался Вестингауз к середине 80-х, но успех последнему не сопутствовал.

Хотя работа в будапештском телеграфе отнимала много сил, Тесла едва успевал заносить в блокнот новые конструкции синхронного двигателя переменного тока. На исходе 1882 года Николу ждал перевод на должность инженера по наладке электрических установок. Путешествуя по Европе, сербский гений постоянно сталкивался с детищами Томаса Эдисона и хорошо изучил принцип действия. Талантливый Тесла предложил немало улучшений для имеющегося оборудования и быстро завоевал уважение в профессиональной среде.

Работы в Страсбурге застопорились, Теслу пригласили вывести замерший состав из тупика. В 1883 году изобретатель попадает во Францию, где принимается за работу. На базе мастерских одновременно с наладкой оборудования Эдисона молодой человек конструирует первый синхронный двигатель переменного тока. Успех пришёл со скоростью присоединения последнего провода. Баузен, исполнявший обязанности мэра, после единственной демонстрацией новинки стал горячим поклонником таланта изобретателя.

Французские предприниматели, видя достоинства переменного тока, не рискнули вложить средства, не существовало на тот момент традиции использования нескольких фаз – к установке потребовалось бы купить источник питания. Тем временем Тесла блестяще выполнил поручение компании и уже ожидал оговорённой заранее, но не закреплённой контрактом, награды. Обретённые средства, по замыслу Николы, стали бы начальным капиталом для выпуска двигателей переменного тока.

Двухфазный двигатель Тесла

Но до Эдисона, видимо, дошли слухи о демонстрации двухфазного двигателя переменного тока. Вероятно, некий предприниматель донёс до американца последние сведения по телеграфу. Континентальная компания Эдисона начала перенаправлять Теслу от чиновника к чиновнику. Последний послал Николу вновь к первому, а первый – вновь ко второму. Круг замкнулся. Поняв, что его одурачили на солидную сумму в 25000 долларов, Тесла с указанного времени решил изменить род занятий.

Путешествие трёхфазного тока в Америку

Уязвлённый молодой Никола задумал поискать счастья за пределами страны. Уже избрав новым местом пребывания Россию, Никола слышит совет Чарльза Бэчлора дойти до Эдисона лично и предложить собственные услуги. Так судьба направила Теслу в США. Одновременно Бэчлор доверительно сообщил, что в России происходит беспорядок с наукой – по указанной причине Яблочков оказался вынужден доводить опыты до конца во Франции.

Доброй души человек, Чарльз дал рекомендательное письмо Тесле, чтобы молодого учёного приняли радушно за океаном. В Париже любитель поэзии остался обобран местными жуликами, любившими шансон. Мелочи в карманах хватило на самый дешёвый билет до Гавра. Голодный и замёрзший Тесла сидел в каюте, но счастливым образом привлёк внимание капитана судна. Тот пригласил учёного в каюту и, услышав историю горемыки, не отказал в гостеприимстве.

Неожиданная потасовка на палубе заставила Теслу, обладавшего хорошими навыками кулачного боя, отбиваться, и заметивший драку капитан сменил милость на равнодушие. По счастью, недалеко оставалось до Нью-Йорка, поклонник Гёте ступил, наконец, на берег, где быстро заработал первые деньги, оказав помощь владельцу местной мастерской.

С Эдисоном Тесле помогло увидеться рекомендательное письмо. Ирония судьбы – без указанного клочка бумаги изобретатели бы не встретились. Эдисон равнодушно выслушал идеи о переменном токе. Что заставляет внести предположение о его заблаговременной осведомлённости. Тесла уже был известен Континентальной компании, её служащие отказали Николе ранее в вознаграждении. Американцы дали возможность европейцу вновь прочувствовать цену собственных обещаний.

Эдисон за очередное улучшение своих машин пообещал Тесле теперь уже 50000 долларов. Что составляло состояние по тем временам. Работавший по 20 часов в сутки Тесла внёс ряд новшеств, одновременно создав новый тип источника питания, выполнив свою часть устно заключённого соглашения. Как в прошлый раз, награда составила нуль – Эдисон заявил, что удачно пошутил по-американски.

Весной 1885 года разорвав отношения с Континентальной компанией, Тесла пускается в одинокое плавание. Впрочем, местные дельцы уже знали изобретателя в качестве талантливого инженера: он создал дуговую лампу под цели освещения улиц. Но вместо платы получил… некие трудно продаваемые акции. Три раза Тесла получал урок прежде, чем осознал, что с воротилами нужно держать ухо востро.

Проработав грузчиком, подсобным рабочим, вырыв неизвестное количество канав, Никола охладел к Америке. Но в апреле 1887 года на пути попался Обадайя Браун. Прораб быстро осознал преимущества идей Теслы и предложил познакомиться с братом Альфредом, работавшим инженером телеграфной компании. Разговор состоялся подшофе, но наутро оба двинулись в нужном направлении.

Уговор состоял в том, чтобы на базе лаборатории Брауна разработать нечто (на усмотрение Теслы) для демонстрации перед адвокатом Чарльзом Пеком. Кружащееся в магнитном поле солидных размеров металлическое яйцо смотрелось действительно потрясающе (так состоялся первый в мире асинхронный двигатель). Появились деньги на развитие концепции переменного, в том числе и трёхфазного, тока.

Трёхфазная система электроснабжения

Один из вариантов многофазной системы электроснабжения — трехфазная система переменного тока. В ней действуют три гармонические ЭДС одной частоты, создаваемые одним общим источником напряжения. Данные ЭДС сдвинуты по отношению друг к другу во времени (по фазе) на один и тот же фазовый угол, равный 120 градусов или 2*пи/3 радиан.

Первым изобретателем шестипроводной трехфазной системы был Никола Тесла, однако немалый вклад в ее развитие внес и российский физик-изобретатель Михаил Осипович Доливо-Добровольский, предложивший использовать всего три или четыре провода, что дало значительные преимущества, и было наглядно продемонстрировано в экспериментах с асинхронными электродвигателями.

В трехфазной системе переменного тока каждая синусоидальная ЭДС находится в собственной фазе, участвуя в непрерывном периодическом процессе электризации сети, поэтому данные ЭДС иногда именуют просто «фазами», как и передающие данные ЭДС проводники: первая фаза, вторая фаза, третья фаза. Фазы сдвинуты друг относительно друга на 120 градусов, а соответствующие проводники принято обозначать латинскими буквами L1, L2, L3 или A, B, C.

Такая система очень экономична, когда речь идет о передаче электрической энергии по проводам на большие расстояния. Трехфазные трансформаторы менее материалоемки.

Силовые кабели требуют меньше проводящего металла (как правило используется медь), поскольку токи в фазных проводниках, по сравнению с однофазными, имеют меньшие действующие величины, если сравнивать с однофазными цепями аналогичной передаваемой мощности.

Трехфазная система очень уравновешена, и оказывает равномерную механическую нагрузку на энергогенерирующую установку (генератор электростанции), чем продлевает срок ее службы.

При помощи трехфазных токов, пропускаемых через обмотки электрических потребителей — различных установок и двигателей, легко получить вращающееся вихревое магнитное поле, необходимое для работы двигателей и других электроприборов.

Синхронные и асинхронные трехфазные двигатели переменного тока имеют простое устройство, и гораздо экономичнее однофазных и двухфазных, а тем более — классических двигателей постоянного тока.

С трехфазной сетью в одной установке можно получить сразу два рабочих напряжения — линейное и фазное, что позволяет иметь два уровня мощности в зависимости от схемы соединения обмоток — «треугольник» (англоязычный вариант «дельта») или «звезда».

Что касается питания систем освещения, то присоединив три группы ламп — к различным фазам сети каждую, — можно значительно снизить мерцание и избавиться от вредного стробоскопического эффекта.

Перечисленные преимущества как раз и обуславливают широкое применение именно трехфазной системы электроснабжения в большой мировой электроэнергетике сегодняшнего дня.

Звезда

Соединение по схеме «звезда» предполагает соединение концов фазных обмоток генератора в одну общую «нейтральную» точку (нейтраль — N), как и концов фазных выводов потребителя.

Провода, соединяющие фазы потребителя с соответствующими фазами генератора называются в трехфазной сети линейными проводами. А провод, соединяющий между собой нейтрали генератора и потребителя — нейтральным проводом (обознаяается «N»).

При наличии нейтрали, трехфазная сеть получается четырехпроводной, а если нейтраль отсутствует — трехпроводной. В условиях, когда сопротивления в трех фазах потребителя равны друг другу, то есть при условии что Za = Zb = Zc, нагрузка будет симметричной. Это идеальный режим работы для трехфазной сети.

При наличии нейтрали, фазными называются напряжения между любым фазным проводом и нейтральным проводом. А напряжения между любыми двумя фазными проводами именуются линейными напряжениями.

Если сеть имеет схему соединения «звезда», то в условиях симметричной нагрузки соотношения между фазными и линейными токами и напряжениями могут быть описаны следующими соотношениями:

Видно, что линейные напряжения сдвинуты по отношению к соответствующим фазным на угол в 30 градусов (пи/6 радиан):

Мощность при соединении «звезда» в условиях симметричной нагрузки, с учетом известных фазных напряжений можно определить по формуле:

О важности нейтрали и «перекосе фаз»

Хотя при абсолютно симметричной нагрузке питание потребителей возможно по трем проводам линейными напряжениями даже в отсутствие нейтрали, тем не менее если нагрузки на фазах не строго симметричны, нейтраль всегда обязательна.

Если же при несимметричной нагрузке нейтральный провод оборвется, либо его сопротивление по какой-то причине значительно возрастет, произойдет «перекос фаз», и тогда нагрузки на трех фазах могут оказаться под разными напряжениями — от нуля до линейного — в зависимости от распределения сопротивлений нагрузок по фазам в момент обрыва нейтрали.

А ведь нагрузки номинально рассчитаны строго на фазные напряжения, значит что-то может выйти из строя. Особенно перекос фаз опасен для бытовой техники и электроники, поскольку из-за этого может не просто перегореть какой-нибудь прибор, но и случиться пожар.

Проблема гармоник кратных третьей

Наиболее часто бытовая и другая техника оснащается сегодня импульсными блоками питания, причем без встроенной схемы коррекции коэффициента мощности. Это значит, что моменты потребления ограничиваются тонкими импульсными пиками тока вблизи вершины сетевой синусоиды, когда конденсатор выходного фильтра, установленный после выпрямителя, резко и быстро подзаряжается.

Когда таких потребителей к сети подключено много, возникает высокий ток третьей гармоники основной частоты питающего напряжения. Данные токи гармоник (кратных третьей) суммируются в нейтральном проводнике и способны перегрузить его, несмотря на то, что на каждой из фаз потребляемая мощность не превышает допустимой.

Проблема особенно актуальна в офисных зданиях, где размещено на небольшом пространстве много разной оргтехники. Если бы во всех встроенных импульсных блоках питания имелись схемы коррекции коэффициента мощности, это бы решило проблему.

Треугольник

Соединение по схеме «треугольник» предполагает со стороны генератора соединение конца проводника первой фазы с началом проводника второй фазы, конца проводника второй фазы с началом проводника третьей фазы, конца проводника третьей фазы с началом проводника первой фазы — получается замкнутая фигура — треугольник.

Линейные и фазные напряжения и токи при симметричной нагрузке, применительно к соединению «треугольник», соотносятся следующим образом:

Мощность в трехфазной цепи при соединении треугольником, в условиях симметричной нагрузки, определяется следующим образом:

В нижеприведенной таблице отражены стандарты фазных и линейных напряжений для разных стран:

Проводники разных фаз трехфазной сети, а также нейтральные и защитные проводники традиционно маркируют собственными цветами.

Так поступают для того, чтобы предотвратить поражение электрическим током и обеспечить удобство обслуживания сетей, облегчить их монтаж и ремонт, а также сделать стандартизированной маркировку фазировки оборудования: порядок чередования фаз порой очень важен, например для задания направления вращения асинхронного двигателя, режима работы управляемого трехфазного выпрямителя и т. д. В разных странах цветовая маркировка различна, в некоторых совпадает.

Получение трехфазного тока

В 80-х годах прошлого 19 века талантливый русский инженер М.О. Доливо-Добровольский разработал систему трехфазного тока, изобрел трехфазный генератор, трехфазный трансформатор и асинхронный трехфазный двигатель. Он впервые осуществил передачу энергии трехфазным током на значительное для того времени расстояние (мощность 200 л.с. передавалась на 170 км при напряжении 15000 в).

Свои изобретения М.О. Доливо-Добровольский демонстрировал на электротехнической выставке во Франфурте-на-Майне в 1891 г.

С того времени трехфазный ток получил широкое распространение в промышленности.

Трехфазный ток имеет следующие преимущества перед однофазным:

— экономия до 25% цветных металлов на сооружение линий электропередачи (для передачи одной и той же мощности при тех же условиях);

— возможность применения трехфазных асинхронных двигателей, простых по конструкции, удобных и надежных в эксплуатации;

— наличие двух эксплуатационных напряжений при четырехпроводной системе, получаемой в случае соединения звездой.

Систему трехфазного тока можно рассматривать как частный случай системы многофазного тока.

Под многофазной системой, или системой многофазных токов, подразумевается совокупность нескольких цепей, в которых одновременно действуют э.д.с. одинаковой частоты и амплитуды, но сдвинутые между собой по фазе.

В симметричной трехфазной системе э.д.с. сдвинуты между собой по фазе на равные углы (120 о ).

Представим себе неподвижный кольцевой цилиндр из стали (статор), в диаметрально противоположных пазах которого размещены три отдельных витка или катушки с одинаковым числом витков из изолированной проволоки (рис. 21).

NS – электромагнит; А, В, С – начала обмоток; Х, У, Z – концы обмоток.

Рисунок 21 – Получение трехфазного тока

Плоскости катушек располагают в пространстве так, чтобы они составили между собой одинаковые углы в 120 о .

Пусть А, В, и С будут начала катушек, а Х, У и Z – их концы.

Под началами будем подразумевать выводы обмоток, идя от которых вдоль пазов, можно обойти все три обмотки в одном и том же направлении (например, по вращению часовой стрелки). Таким образом, начала обмоток (а также концы) при выходе из пазов будут сдвинуты между собой на угол 120 о .

Внутри статора поместим вращающийся электромагнит (ротор), обмотку которого будем питать постоянным током.

При вращении ротора с помощью теплового или гидравлического двигателя его магнитные силовые линии будут пересекать проводники катушек статора, вследствие чего в них появляется э.д.с. Направление э.д.с. во всех проводниках каждой катушки будет согласованным (э.д.с. складываются).

Условимся считать положительным направлением э.д.с. и токов в катушках, если они будут направлены от концов к началам обмоток (на рис. 21 положительные направления указаны стрелками).

Однако нулевые или максимальные значения э.д.с. в разных катушках не будут наступать одновременно.

Пусть ротор вращается в направлении движения стрелки часов. Для положения ротора, указанного на рисунке, э.д.с. в первой катушке (АХ) имеет наибольшее положительное значение. Очевидно, положительный максимум э.д.с. во второй катушке (ВУ) наступит только после того, как ротор повернется на угол 120 о ; время, в течение которого он успеет повернуться на 120 о , будет равно периода.

Положительный максимум э.д.с. в третьей катушке (СZ) наступит после того, как ротор повернется на 120 о относительно второй катушки (ВУ), что произойдет также в течение периода.

При синусоидальном изменении магнитной индукции в воздушном зазоре э.д.с. в каждой катушке будет меняться по синусоидальному закону. Поэтому э.д.с. в катушках могут представлены тремя синусоидами, смещенными на угол 120 о ( ) по фазе или на периода во времени (рис. 22).

Рисунок 22 – Кривые э.д.с. трех- Рисунок 23 – Векторная диаграмма

фазной системы э.д.с. симметричной трехфазной

Их можно изобразить также тремя векторами, расположенными симметрично и сдвинутыми между собой на 120 о (рис. 23).

Необходимо помнить, что векторная диаграмма получается симметричной лишь при одинаковых положительных направлениях во всех обмотках. Если, например, изменить положительное направление в первой катушке (АХ) на обратное, то изменится векторная диаграмма э.д.с., которая будет выглядеть в виде веера (рис. 24). Однако все соотношения, вытекающие из этой векторной диаграммы, будут справедливыми.

Рисунок 24 – Векторная диаграмма э.д.с. с несимметричным расположением векторов.

Если в первой катушке будет индуктироваться э.д.с.

, (57)

то, э.д.с. во второй катушке будет отставать 120 о от э.д.с. в первой катушке

, (58)

и, э.д.с. в третьей катушке будет отставать на 240 о от э.д.с. в первой катушке

. (59)

Здесь и – мгновенные значения э.д.с. в отдельных катушках;

Ем – амплитуда э.д.с.

Поскольку все катушки имеют одинаковую конструкцию, ЕмА = ЕмВ = ЕмС = Ем.

В каждую из обмоток трехфазного генератора включим свою нагрузку zA, zB, zC (рис. 25).

В результате получим три самостоятельные однофазные цепи, в которых э.д.с. будут сдвинуты по фазе на 120 о или на периода. Такая трехфазная система называется несвязанной (или независимой).

В этой системе для передачи энергии от генератора к потребителям требуется шесть проводов, поэтому никакого преимущества по сравнению с передачей энергии однофазным током она не дает.

Обмотки генератора, питающие провода и приемники электрической энергии, в трехфазных системах обычно называют фазами.

Если активные, индуктивные и емкостные сопротивления потребителей разных фаз будут соответственно равны, то токи в фазах IA, IB и IC , будут также равны и сдвинуты на одинаковые углы относительно своих э.д.с. (рис.26). в этом случае нагрузка называется симметричной, или равномерной (например, трехфазные двигатели).

В принципе генератор может иметь не 3, а т обмоток. В этом случае будет многофазная система с количеством фаз т.

Если все обмотки генератора одинаковы по своей конструкции (что обычно всегда бывает в условиях практики) и сдвинуты между собой на равные углы , то система э.д.с., получаемых от такого генератора, будет симметричной.

Получение трехфазного тока и его характеристики

1. Ранее при изучении электродинамики мы рассматривали только двухпроводные линии электрических цепей постоянного и переменного тока. Однако в силу целого ряда преимуществ на практике широкое применение получили цепи, в которых переменный электрический ток течет одновременно по нескольким проводам, но со сдвинутыми фазами колебаний.

Если в линии электропередачи действуют одновременно три переменные э.д.с., колебания которых сдвинуты друг по отношению к другу по фазе на угол 120°, то такую линию электропередачи называют трехфазной, а электрический ток — трехфазным.

Для получения трехфазного тока в синхронном генераторе (см. § 14.1) размещают три обмотки 1, 2 и 3 (рис. 14.19), плоскости которых повернуты друг по отношению к другу на угол 120°. Согласно закону электромагнитной индукции Фарадея, в обмотках при вращении ротора индуцируются переменные э.д.с. с одинаковыми частотами, но с фазами, сдвинутыми друг по отношению к другу на угол 120° (см. § 14.1):

На рис. 14.20 изображена векторная диаграмма действующих значений э.д.с. &lf &2, ?3 для случая, когда амплитуды э.д.с. различны.

* 2. Если соединить все три конца или начала каждой из обмоток вместе (рис. 14.21), то очевидно, что линия электропередачи будет состоять из четырех проводов вместо шести. Для определения начала и конца обмотки поступают следующим образом. Начало одной из обмоток совершенно произвольно обо-

значают А, конец — X. Затем к ней присоединяют вторую обмотку, и если при этом напряжение увеличилось, значит, обмотки соединены концами, а начала свободны. Начало второй обмотки обозначают В, конец — Y. Таким же образом находят начало С и конец Z третьей обмотки.

Изображенный на рис. 14.21 способ подключения обмоток генератора получил название соединения звездой. Каждый свободный провод называют фазным проводом или просто фазой. Действующие значения э.д.с., индуцируемых в каждой из обмоток, называют фазными э.д.с. (?ф).

Обмотки генератора, как правило, изготовляют совершенно одинаковыми. Поэтому амплитуды фазных э.д.с. равны, но сдвинуты по фазе на 120° друг по отношению к другу. В этом случае сумма фазных э.д.с., очевидно, равна нулю. #

* 3. Кроме фазных различают еще и линейные э.д.с. ?л. Так называют действующие значения разностей двух фазных э.д.с., которые индуцируются в двух смежных обмотках генератора одновременно.

Для вычисления линейных э.д.с. необходимо попарно найти разность фазных э.д.с., индуцируемых в каждой из обмоток генератора по отдельности. При этом следует учесть сдвиг фазы между ними. Из векторной диаграммы (рис. 14.22) видно, что

Таким образом, одним из существенных преимуществ четырехпроводной линии электропередачи и соединения обмоток генератора звездой является возможность получения в линии двух разных напряжений одновременно: фазных и линейных.

Обмотки генератора можно подключать друг к другу последовательно (рис. 14.23) и получать только фазные э.д.с. Такой способ подключения называют соединением треугольником. В обмотках, соединенных треугольником, при строго синусоидальных э.д.с. и при отсутствии нагрузки (или при симметричной нагрузке) суммарная э.д.с. равна нулю и ток в них отсутствует. Однако если форма э.д.с. в обмотках отклоняется от синусоидальной или генератор нагружен несимметрично, то суммарная э.д.с. уже не равна нулю и по обмоткам течет ток, что крайне нежелательно. Поэтому соединение обмоток генератора треугольником, как правило, не применяют. *