Принцип получения трехфазного переменного тока

Трёхфазный переменный ток. Получение трёхфазного тока Трёхфазный переменный ток. Получение трёхфазного тока Работающие в настоящее время электростанции производят трёхфазный ток. Главное его

Принцип получения трехфазного переменного тока

Трёхфазный переменный ток. Получение трёхфазного тока

Трёхфазный переменный ток. Получение трёхфазного тока

Работающие в настоящее время электростанции производят трёхфазный ток. Главное его преимущество заключается в лёгкости получения вращающегося магнитного поля. Вращающееся поле используется в самом простом и надёжном двигателе в мире – асинхронном. Трёхфазный ток легко производить и экономично передавать.

Трёхфазной системой переменного тока называется совокупность трёх однофазных токов одинаковой частоты и амплитуды, сдвинутых друг относительно друга по фазе на 1/3 периода (или 120 градусов.
Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора.

23. А)Звезда. Б)Треугольник

24.Электроизмерительные приборы различаются по следующим признакам:

По роду измеряемой величины; по роду тока;по степени точности; по принципу действия; по способу получения отсчета; по характеру применения.

Кроме этих признаков, электроизмерительные приборы можно также отличать: по способу монтирования; по способу защиты от внешних магнитных или электрических полей; по выносливости в отношении перегрузок; по пригодности к применению при различных температурах; по габаритным размерам и другим признакам.

Для измерения электрических величин применяются различные электроизмерительные приборы, а именно: тока — амперметр; напряжения — вольтметр;

электрического сопротивления — омметр, мосты сопротивлений; мощности — ват­тметр; электрической энергии — счетчик; частоты перемен­ного тока — частотомер; коэффициента мощности — фа­зометр.

По роду тока приборы делятся на приборы постоянного тока, приборы переменного тока и приборы постоянного и переменного тока.

По степени точности приборы делятся на восемь классов: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5 и 4. Цифры указывают значение допустимой приведенной погрешности в процентах.

По принципу действия приборы подразделяются на: магнитоэлектрические; электромагнитные; электродинамические (ферромагнитные); индукционные;

и др. По способу получения отсчета приборы могут быть с непосредственным отсчётом и самозаписывающие. По характеру применения приборы делятся на стационарные, переносные и для подвижных установок.

25.Измерение тока. Для измерения тока в цепи амперметр или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Пуск в ход асинхронных двигателей

При пуске двигателя в ход должны по возможности удовлетворяться следующие основные требования: процесс пуска должен быть простым и осуществляться без сложных пусковых устройств, пусковой момент должен быть достаточно большим, а пусковые токи — по возможности малыми. Иногда к этим требованиям добавляются и другие, обусловленные особенностями конкретных приводов, в которых используются двигатели: необходимость плавного пуска, наибольшего пускового момента и пр. Практически используются следующие способы пуска: непосредственное подключение обмотки статора к сети (прямой пуск); понижение напряжения, подводимого к обмотке статора при пуске; подключение к обмотке ротора пускового реостата.

Прямой пуск применяется для пуска асинхронных двигателей с короткозамкнутым ротором

Назначение

Подстанция, в которой стоят повышающие трансформаторы, повышает электрическое напряжение при соответствующем снижении значения силы тока, в то время как понижающая подстанция уменьшает выходное напряжение при пропорциональном увеличении силы тока.

Необходимость в повышении передаваемого напряжения возникает в целях многократной экономии металла, используемого в проводах ЛЭП, и уменьшения потерь на активном сопротивлении. Действительно, необходимая площадь сечения проводов определяется только силой проходящего тока и отсутствием возникновения коронного разряда. Также уменьшение силы проходящего тока влечёт за собой уменьшение потери энергии, которая находится в прямой квадратичной зависимости от значения силы тока. С другой стороны, чтобы избежать высоковольтного электрического пробоя, применяются специальные меры: используются специальные изоляторы, провода разносятся на достаточное расстояние и т. д. Основная же причина повышения напряжения состоит в том, что чем выше напряжение, тем большую мощность и на большее расстояние можно передать по линии электропередачи.

42.Электрическая сеть — совокупность электроустановок, предназначенных для передачи и распределения электроэнергии от электростанции к потребителю.

Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии.

43.Электронная лампа, радиолампа — электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами.

Радиолампы массово использовались в ХХ веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т. п.). В настоящее время практически полностью вытеснены полупроводниковыми приборами. Иногда ещё применяются в мощных высокочастотных передатчиках и аудиотехнике.

44.Газоразрядная лампа — источник света, излучающий энергию в видимом диапазоне. Физическая основа — электрический разряд в газах. В последнее время принято называть газоразрядные лампы разрядными лампами.

Разрядные лампы обладают высокой эффективностью преобразования электрической энергии в световую. Эффективность измеряется отношением люмен/Ватт.

45.Транзистор полупроводнико́вый трио́д — радиоэлектронный компонент из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналом управлять током в электрической цепи.

Тиристор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.

46.Полупроводниковые материалы — вещества с чётко выраженными свойствами полупроводников в широком интервале температур, включая комнатную (

300 К), являющиеся основой для создания полупроводниковых приборов. Удельная электрическая проводимость при 300 К составляет 10-4?10

10 Ом?1·см?1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

47. Электронные выпрямители –эл. устройство служащие для преобразования энергию переменного тока в энергию постоянного тока.

Трёхфазный переменный ток. Получение трёхфазного тока

Работающие в настоящее время электростанции производят трёхфазный ток. Главное его преимущество заключается в лёгкости получения вращающегося магнитного поля. Вращающееся поле используется в самом простом и надёжном двигателе в мире – асинхронном. Трёхфазный ток легко производить и экономично передавать.

Трёхфазной системой переменного тока называется совокупность трёх однофазных токов одинаковой частоты и амплитуды, сдвинутых друг относительно друга по фазе на 1/3 периода (или 120 градусов.
Для получения трехфазной системы нужно взять три одинаковых генератора переменного однофазного тока, соединить их роторы между собой, чтобы они не меняли свое положение при вращении. Статорные обмотки этих генераторов должны быть повернуты относительно друг друга на 120° в сторону вращения ротора.

23. А)Звезда. Б)Треугольник

24.Электроизмерительные приборы различаются по следующим признакам:

По роду измеряемой величины; по роду тока;по степени точности; по принципу действия; по способу получения отсчета; по характеру применения.

Кроме этих признаков, электроизмерительные приборы можно также отличать: по способу монтирования; по способу защиты от внешних магнитных или электрических полей; по выносливости в отношении перегрузок; по пригодности к применению при различных температурах; по габаритным размерам и другим признакам.

Для измерения электрических величин применяются различные электроизмерительные приборы, а именно: тока — амперметр; напряжения — вольтметр;

электрического сопротивления — омметр, мосты сопротивлений; мощности — ват­тметр; электрической энергии — счетчик; частоты перемен­ного тока — частотомер; коэффициента мощности — фа­зометр.

По роду тока приборы делятся на приборы постоянного тока, приборы переменного тока и приборы постоянного и переменного тока.

По степени точности приборы делятся на восемь классов: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5 и 4. Цифры указывают значение допустимой приведенной погрешности в процентах.

По принципу действия приборы подразделяются на: магнитоэлектрические; электромагнитные; электродинамические (ферромагнитные); индукционные;

и др. По способу получения отсчета приборы могут быть с непосредственным отсчётом и самозаписывающие. По характеру применения приборы делятся на стационарные, переносные и для подвижных установок.

25.Измерение тока. Для измерения тока в цепи амперметр или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Получение трехфазного тока

Электрические цепи трехфазного переменного тока

Трехфазный электрический ток

Трехфазная цепь представляет собой совокупность электрических цепей, в которых действуют три синусоидальные э.д.с. одинаковой частоты, отличающиеся по фазе одна от другой (φ = 120 о ) и создаваемые общим источником энергии. Каждую из частей многофазной системы, характеризующуюся одинаковым током, принято называть фазой. Таким образом, слово фаза в электротехнике имеет два значения – угол φ и часть многофазной системы (отдельный фазный провод).

Основные преимущества трехфазной системы: возможность простого получения кругового вращающегося магнитного поля (это позволило создать электродвигатели переменного тока), экономичность и эффективность (мощность можно передать по трем фазным проводам без применения четвертого общего провода — нейтрали), а также возможность использования двух различных эксплуатационных напряжений в одной установке (фазного и линейного, которые обычно составляют 220 В и 380 В, соответственно).

История появления трехфазных электрических цепей связана с именем М.С. Доливо-Добровольского Петербургского ученого, который в 1886 г., доказав, что многофазные токи способны создавать вращающееся магнитное поле, предложил (запатентовал) конструкцию трехфазного электродвигателя.

Трехфазный ток является простейшей системой многофазных токов, способных создавать вращающееся магнитное поле. Этот принцип положен в основу работы трехфазных электродвигателей.

Предложив конструкцию электродвигателя переменного тока, М.С. Доливо-Добровольский разработал и все основные элементы трехфазной электрической цепи. Трехфазная цепь состоит из трехфазного генератора, трехфазной линии электропередач и трехфазных приемников.

В результате предложенной трехфазной системы электрического тока стало возможным эффективно преобразовывать электрический ток в механическую энергию.

Электрическую энергию трехфазного тока получают в синхронных трехфазных генераторах (рис. 27). Три обмотки 2 статора 1 смещены между собой в пространстве на угол 120°. Их начала обозначены буквами А, В, С, а концы – x, y, z. Ротор 3 выполнен в виде постоянного электромагнита, магнитное поле которого возбуждает постоянный ток I, протекающий по обмотке возбуждения 4. Ротор принудительно приводится во вращение от постороннего двигателя. При вращении магнитное поле ротора последовательно пересекает обмотки статора и индуктирует в них ЭДС, сдвинутые (но уже во времени) между собой на угол 120°.

Трехфазный синхронный генератор

Для симметричной системы ЭДС (рис. 28) справедливо

Волновая и векторная диаграммы симметричной системы ЭДС

На диаграмме изображена прямая последовательность чередования фаз (пересечение ротором обмоток в порядке А, В, С). При смене направления вращения чередование фаз меняется на обратное — А, С, В. От этого зависит направление вращения трехфазных электродвигателей.

Существует два способа соединения обмоток (фаз) генератора и трехфазного приемника: «звезда» и «треугольник».

В генераторах трехфазного тока электрическая энергия генерируется в трех одинаковых обмотках, соединенных по схеме звезда. Чтобы сэкономить на проводах линии передачи электроэнергии от генератора к потребителю тянутся только три провода. Провод от общей точки соединения обмоток не тянется, т.к. при одинаковых сопротивлениях нагрузки (при симметричной нагрузке) ток в нем равен нулю.

Схема замещения трехфазной системы, соединенной «звездой»

Согласно первому закону Кирхгофа можно записать IO = IА+ IВ + IС.

При равенстве ЭДС в фазных обмотках генератора и при равенстве сопротивлений нагрузки (т.е. при равенстве значений токов IА,IВ,IС) в представленной на рисунке системе, с помощью векторных диаграмм можно показать, что результирующий ток IO в центральном проводнике будет равен нулю. Таким образом, получается, что в симметричных системах (когда сопротивления нагрузок одинаковы), центральный провод может отсутствовать и линия для передачи системы трехфазного тока может состоять только из трех проводов.

В распределительных низковольтных сетях, в которых присутствует много однофазных потребителей, обеспечение равномерной нагрузки каждой фазы становится не возможным, такие сети делаются четырехпроводными.

Для обеспечения электробезопасносности принято низковольтные потребительские сети (сети

Трехфазный переменный ток

В настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока .

Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода ( φ =2 π /3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током .

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока . По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.

Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока

Как осуществляется подобный генератор легко понять из схемы на рис. 2.

Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть

Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120 о ). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде постоянного магнита.

В каждой катушке индуцируется переменная ЭДС одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.

Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например электрические лампы.

В этом случае для передачи всей энергии, которую поглощают электроприемники, требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.

Первый из этих способов, называется соединением звездой (рис. 3).

Рис. 3. Четырехпроводная система проводки при соединении трехфазного генератора звездой. Нагрузки (группы электрических ламп I, II, III) питаются фазными напряжениями.

Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1 ‘ , 2 ‘ , 3 ‘ — концами соответствующих фаз.

Соединение звезд заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью , и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами , идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом , идущим от нулевой точки генератора. Такая система проводки называется четырехпроводной .

Напряжения между нулевой точкой и началом каждой фазы называют фазными напряжениями , а напряжения между началами обмоток, т, е. точками 1 и 2, 2 и 3, 3 и 1, называют линейными . Фазные напряжения обычно обозначают U1 , U 2 , U 3 , или в общем виде U ф, а линейные напряжения — U12, U23 , U 31 , или в общем виде U л.

Между амплитудами или действующими значениями фазных и линейных напряжений при соединении обмоток генератора звездой существует соотношение U л = √ 3 U ф ≈ 1,73 U ф

Таким образом, например, если фазное напряжение генератора U ф = 220 В, то при соединении обмоток генератора звездой линейное напряжение U л — 380 В.

В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю . Поэтому в этом случае можно нулевой провод упразднить и перейти к еще более экономной трехпроводной системе. Все нагрузки включаются при этом между соответствующими парами линейных проводов.

При несимметричной нагрузке ток в нулевом проводе не равен нулю, но, вообще говоря, он слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем линейные.

При эксплуатации трехфазного переменного тока стремятся сделать нагрузку различных фаз по возможности одинаковой. Поэтому, например, при устройстве осветительной сети большого дома при четырехпроводной системе вводят в каждую квартиру нулевой провод и один из линейных с таким расчетом, чтобы в среднем на каждую фазу приходилась примерно одинаковая нагрузка.

Другой способ соединения обмоток генератора, также допускающий трехпроводную проводку — это соединение треугольником, изображенное на рис. 4.

Рис. 4. Схема соединения обмоток трехфазного генератора треугольником

Здесь конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам этого треугольника — точкам 1, 2 и 3. При соединении треугольником линейное напряжение генератора равно его фазному напряжению : U л = U ф.

Таким образом, переключение обмоток генератора со звезды на треугольник приводит к снижению линейного напряжения в √ 3 ≈ 1,73 раза . Соединение треугольником также допустимо лишь при одинаковой или почти одинаковой нагрузке фаз. Иначе ток в замкнутом контуре обмоток будет слишком силен, что опасно для генератора.

При применении трехфазного тока отдельные приемники (нагрузки), питающиеся от отдельных пар проводов, также могут быть соединены либо звездой, т. е. так, что один конец их присоединен к общей точке, а оставшиеся три свободных конца присоединяются к линейным проводам сети, либо треугольником, т. е. так, что все нагрузки соединяются последовательно и образуют общий контур, к точкам 1, 2, 3 которого присоединяются линейные провода сети.

На рис. 5 показано соединение нагрузок звездой при трехпроводной системе проводки, а на рис. 6 — при четырехпроводной системе проводки (в этом случае общая точка всех нагрузок соединяется с нулевым проводом).

На рис. 7 показана схема соединения нагрузок треугольником при трехпроводной системе проводки.

Рис. 5. Соединение нагрузок звездой при трехпроводной системе проводки

Рис. 6. Соединение нагрузок звездой при четырехпроводной системе проводок

Рис. 7. Соединение нагрузок треугольником при трехпроводной системе проводки

Практически важно иметь в виду следующее. При соединении нагрузок треугольником каждая нагрузка находится под линейным напряжением, а при соединении звездой — под напряжением, в √ 3 раз меньшим. Для случая четырехпроводной системы это ясно из рис. 6. Но то же имеет место в случае трехпроводной системы (рис. 5).

Между каждой парой линейных напряжений здесь включены последовательно две нагрузки, токи в которых сдвинуты по фазе на 2 π /3. Напряжение на каждой нагрузке равно соответствующему линейному напряжению, деленному на √ 3 .

Таким образом, при переключении нагрузок со звезды на треугольник напряжения на каждой нагрузке, а следовательно, и ток в ней повышаются в √ 3 ≈ 1,73 раза. Если, например, линейное напряжение трехпроводной сети равнялось 380 В, то при соединении звездой (рис. 5) напряжение на каждой из нагрузок будет равно 220 В, а при включении треугольником (рис. 7) будет равно 380 В.

При подготовке статьи использовалась информация из учебника физики под редакцией Г. С. Ландсберга.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Трёхфазный переменный ток. Получение трёхфазного тока

Работающие в настоящее время электростанции производят трёхфазный ток. Главное его преимущество заключается в

лёгкости получения вращающегося магнитного поля. Вращающееся поле используется в самом простом и надёжном двигателе в мире – асинхронном (его также называют индукционным двигателем). Трёхфазный ток легко производить и экономично передавать.

Трёхфазной системой переменного тока называется совокупность трёх однофазных токов одинаковой частоты и амплитуды, сдвинутых друг относительно друга по фазе на 1/3 периода (или 120 градусов).

29. СОЕДИНЕНИЕ ЗВЕЗДОЙ

Если фазные обмотки генератора или потребителя соединить так, чтобы концы обмоток были соединены в одну общую точку, а начала обмоток присоединены к линейным проводам, то такое соединение называется соединением звездой и обозначается условным знаком Y. На рис. 173 обмотки генератора и потребителя соединены звездой. Точки, в которых соединены концы фазных обмоток генератора или потребителя, называются соответственно нулевыми точками генератора (0) и потребителя (0′). Обе точки 0 и 0′ соединены проводом, который называется нулевым, или нейтральным, проводом. Остальные

три провода трехфазной системы, идущие от генератора к потре­бителю, называются линейными проводами. Таким образом, генератор соединен с потребителем четырьмя проводами. Поэтому эта система называется четырех проводной системой трехфазного тока.

Сравнивая несвязанную (см. рис. 172) и четырехпроходную (см. рис. 173) системы трехфазного тока, видим, что в первом слу­чае роль обратного провода выполняют три провода системы, а во втором — один нулевой провод. По нулевому проводу протекает ток, равный геометрической сумме трех токов:

Напряжения, измеренные между началами фаз генератора (или потребителя) и нулевой точкой (или нулевым проводом), называ­ются фазными напряжениями и обозначаются Uа,Uв, Uс, или в общем виде Uф. Часто задаются величины э. д. с. фазных обмоток генератора. Они обозначаются ЕА, Ев, Ее, или Еф. Если пренебречь сопротивлениями обмоток генератора, то можно записать:

Напряжения, измеренные между началами двух фаз: А и В, В и С, С и А — генератора или потребителя, называются линей­ными напряжениями и обозначаются Uab, Uвс, Uса, или в общем виде Uл. Стрелки, поставленные на рис. 173, показы­вают выбранное положительное направление тока, которое в ли­нейных проводах принято от генератора к потребителю, а в нулевом проводе — от потребителя к генератору.

Если присоединить зажимы вольтметра к точкам А и В, то он покажет линейное напряже­ние Uав. Так как положитель­ные направления фазных напря­жений Ua, Uв и Uс выбраны от начал фазных обмоток к их кон­цам, то вектор линейного на­пряжения UАВ будет равен гео­метрической разности векторов фазных напряжений UA и UB:

Аналогично можно записать:

Иначе можно сказать, что мгновенное значение линейного на­пряжения равно разности мгновенных значений соответствующих фазных напряжений.

На первом рисунке показан принцип получения однофазного тока и его форма. Здесь рамка вращается в поле постоянного магнита и в ней индуцируется синусоидальная ЭДС. Если мы возьмём 3 рамки, расположенных под углом 120˚ друг к другу, то в результате получим три ЭДС, которые сдвинуты относительно друг друга по фазе на 120˚. При этом предполагаем, что вращение происходит с постоянной скоростью. Если считать, что ЭДС первой фазной обмотки e1 начинается в начале периода, т.е. t = 0, то:

На современных генераторах обычно сделано наоборот: фазные обмотки размещены в неподвижной части генератора – статоре, а магнитное поле создаётся вращающимся с одной скоростью ротором, который представляет собой электромагнит (рис.125). Векторная диаграмма и график трёхфазного тока представлены на рис.126.

30. СОЕДИНЕНИЕ ТРЕУГОЛЬНИКОМ

Кроме соединения звездой, генераторы, трансформаторы, дви­гатели и другие потребители трехфазного тока могут включаться треугольником.

На рис. 179 представлена несвязанная трехфазная система. Объединяя попарно провода несвязанной шестипроводной системы и соединяя фазы так, как указано на чертеже, переходим к трех­фазной трехпроводной системе, соединенной треугольником.

Как видно из рис. 180, соединение треугольником выполняется таким образом, чтобы конец фазы А был соединен с началом фазы В, конец фазы В соединен с началом фазы С и конец фазы С соединен с началом фазы А. К местам соединения фаз присоединяют линей­ные провода.

Если обмотки генератора соединены треугольником, то, как видно на рис. 180, линейное напряжение создает каждая фазная обмотка. У потребителя, соединенного треугольником, линейное

напряжение подключается к зажимам фазного сопротивления. Сле­довательно, при соединении треугольником фазное напряжение равно линейному:

Определим зависимость между фазными и линейными токами при соединении треугольником, если нагрузка фаз будет одинакова по величине и характеру.

Составляем уравнения токов по первому закону Кирхгофа для трех узловых точек А 1 , В 1 и С 1 потре­бителя:

Отсюда видно, что линейные токи равны геометрической раз­ности фазных токов. При симметричной нагрузке фазные токи одинаковы по величине и сдвинуты один относительно другого на 120°. Производя вычитание векторов фазных токов согласно полученным уравнениям, получаем линейные токи (рис. 181). Зависимость между фазными и линейными токами при соедине­нии в треугольник показана на рис. 182:

Следовательно, при сим­метричной нагрузке, соеди­ненной треугольником, ли­нейный ток в аз боль­ше фазного тока.

На рис. 183 дана вектор­ная диаграмма токов и на­пряжений при равномерной активно-индуктивной нагрузке, соединенной треугольником. По­строение диаграммы производится следующим образом. В выб­ранном масштабе строим равносторонний треугольник линейных напряжений сети Uав, Ubc и Uас, которые равны фазным на­пряжениям потребителя. В сторону отставания под углами jAB, jBC, jCA к линейным напряжениям UAB, Uвс и Uса строим в масштабе векторы фазных токов IAB, IBC и ICA.Затем, как было указано раньше, определяем линейные токи IA, IB и IC.

У двигателей и у других потребителей трехфазного тока в большинстве случаев наружу выводят все шесть концов трех обмоток, которые по желанию можно соединять либо звездой, либо треугольником. Обычно к трехфазной машине крепится доска из изоляционного материала (клеммная доска), на ко­торую и выводят все шесть концов.

На рис. 184 показана схема присоединения концов обмоток трехфазной машины к зажимам клеммной доски. Медные пере­мычки позволяют легко менять схему включения обмоток.

Если у нас есть двигатель, на паспорте которого написано 127/220 в, значит этот двигатель можно использовать на два напря­жения: 127 и 220 в.

Если линейное напряжение сети равно 127 в, то обмотки двига­теля необходимо включить треугольником (рис. 184, б). Тогда на обмотку каждой фазы двигателя будет подано напряжение 127 в. При напряжении 220 в обмотки двигателя нужно включить звез­дой (рис. 184, а), тогда обмотка каждой фазы также будет под на­пряжением 127 в.

31. МОЩНОСТЬ ТРЕХФАЗНОГО ТОКА

Мощность, потребляемая нагрузкой от сети трехфазного тока, равна сумме мощностей, потребляемых отдельными фазами, т. е.

При равномерной нагрузке мощность, потребляемая каждой фазой,

где Uф — фазное напряжение,

cos j — коэффициент мощности нагрузки.

Мощность, потребляемая всеми тремя фазами,

При соединении приемников энергии звездой соотношение меж­ду линейными и фазными значениями напряжений и токов:

Следовательно, мощность, потребляемая нагрузкой от трехфазной

При соединении приемников энергии треугольником соотношение между линейными и фазными значениями напряжений и токов:

Следовательно, мощность, потребляемая нагрузкой,

Таким образом, при равномерной нагрузке мощность, потребляе­мая от трехфазной сети, независимо от схемы включения нагрузки, выражается следующей формулой:

32. Трансформа́тор (от лат. transformo — преобразовывать) — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на каком-либо магнитопроводе и предназначенное для преобразования посредствомэлектромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока (ГОСТ 16110-82).

Трансформатор осуществляет преобразование напряжения переменного тока и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) изферромагнитного магнито-мягкого материала.

абота трансформатора основана на двух базовых принципах:

1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)

2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Переменный ток

Электрический ток, величина и направление которого изменяются через равные промежутки времени, называют переменным. Такой ток условно обозначают знаком

Переменный ток в отличие от постоянного, который все время имеет одно направление и не меняет своей величины, изменяется по синусоидальному закону

Получение однофазного переменного тока. Такой ток получают от генераторов переменного тока. Схема простейшего генератора переменного тока показана на рисунке ниже:

Между полюсами N и S электромагнита вращается стальной цилиндр А, на котором укреплена рамка, изготовленная из медного изолированного провода. Концы рамки присоединены к медным кольцам, изолированным от вала. К кольцам прижаты неподвижные щетки Щ, которые соединены проводами с приемником энергии R. Вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон индуктируются электродвижущие силы, которые, суммируясь, образуют общую электродвижущую силу. При каждом обороте рамки направление общей электродвижущей силы изменяется на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами электромагнита. Индуктируемая в рамке электродвижущая сила также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Следовательно, при равномерном вращении рамки в ней будет индуктироваться электродвижущая сила, периодически изменяющаяся по величине и направлению.

Если неподвижные щетки Щ, соединенные проводами с приемником энергии R, образуют замкнутую электрическую цепь, то от источника энергии к приемнику будет протекать переменный однофазный ток.

Время, в течение которого переменный ток совершает полный цикл изменений по величине и направлению, называется периодом. Он обозначается буквой Т и измеряется в секундах. Число периодов в секунду называется частотой переменного тока. Она обозначается буквой f и измеряется в герцах.

Так как частота показывает число полных циклов изменения тока по величине и направлению за одну секунду, то период определяется как частное от деления одной секунды на частоту:

В технике применяют переменные токи различных частот. В России все электростанции вырабатывают электроэнергию переменного тока стандартной частоты — 50 гц. Этот ток называют током промышленной частоты и используют для снабжения электроэнергией промышленных предприятий и для освещения.

Получение трехфазного переменного тока. В технике широкое применение находит трехфазный переменный ток. Трехфазным током называют систему, состоящую из трех однофазных токов одинаковой частоты, сдвинутых по фазе на одну треть периода друг относительного друга и протекающих по трем проводам. Трехфазный ток получают в трехфазном генераторе, создающем три электродвижущие силы, сдвинутые по фазе на угол 120° (одну треть периода).

Простейший генератор трехфазного тока представляет собой кольцеобразный стальной сердечник, на котором расположены три обмотки: ω1, ω2 и ω3, сдвинутые одна относительно другой по окружности сердечника на 120°. Сердечник с обмотками называют статором генератора, а вращающийся внутри статора электромагнит — ротором. По обмотке ротора, называемой обмоткой возбуждения, проходит постоянный ток, который намагничивает ротор, образуя северный N и южный S полюсы. При вращении ротора созданное им магнитное поле пересекает обмотки статора, в которых индуктируется электродвижущая сила. Величина электродвижущей силы зависит от скорости, с которой магнитные силовые линии ротора пересекают магнитное поле статора. Полюсы ротора и обмотки статора должны быть такими, чтобы в каждой из обмоток статора возникала синусоидальная электродвижущая сила, сдвинутая по фазе на 120°.

Если к каждой из трех обмоток генератора подключить нагрузку, то в результате получатся три цепи однофазного переменного тока. При равенстве сопротивлений потребителей амплитуды токов в каждой цепи будут равны между собой, а фазовые соотношения между токами будут такими же, как и между электродвижущими силами в обмотках генератора. Каждую из обмоток генератора вместе с внешней цепью, присоединенной к ней, принято называть фазой. Чтобы из этих независимых однофазных систем образовать единую трехфазную систему, необходимо соединить отдельные обмотки. Обмотки генератора могут соединяться двумя способами: звездой и треугольником.

При соединении звездой обмоток генератора и потребителей (рис. 58) используются четыре провода вместо шести, необходимых в несвязанной системе. Сокращение количества проводов увеличивает экономичность устройства линии передачи энергии. Три провода, идущие от обмоток генератора к приемникам /, //, III, называют линейными, так как они составляют линию для передачи энергии от генератора к приемникам, а провод, соединяющий общие точки фаз генератора и потребителя — нулевым. Если нагрузки всех трех фаз одинаковы по величине, то суммарный ток в нулевом проводе будет равен нулю. Однако равномерную нагрузку можно обеспечить только при питании трехфазных потребителей, подключаемых и отключаемых всеми тремя фазами одновременно. Однофазные потребители включаются независимо один от другого, и при питании их не может быть достигнута полная равномерность нагрузки фаз. В этом случае нулевой провод должен поддерживать равенство разных напряжений потребителя

Напряжение между линейными проводами называют линейным, а напряжение, а каждой фазе — фазным. При соединении звездой линейный ток равен фазному, а фазное напряжение меньше линейного в 1,73 раза при одинаковой нагрузке фаз.

Однофазовые приемники, например лампы накаливания, можно подключать непосредственно к линейным проводам на линейное напряжение (рис. 59). Подобное соединение носит название соединения треугольником. Это соединение применяется для осветительной и силовой нагрузок. Фазы трехфазного генератора соединяют следующим образом: конец первой фазы с началом второй, конец второй с началом третьей и конец третьей с началом первой, а к точкам соединения фаз подключают линейные провода. Поскольку фазы потребителя или генератора при таком соединении подключаются непосредственно к линейным проводам, фазные напряжения их равны линейным, т. е. Uф=Uл, а линейные токи по абсолютной величине больше фазных в 1,73 раза при одинаковой нагрузке фаз. Соединение треугольником обмоток генераторов встречается довольно редко. В двигателях трехфазного тока концы обмоток можно соединить звездой или треугольником.

Мощность переменного тока. Основной величиной при электрических расчетах является средняя, или активная, мощность. Ее подсчитывают по формуле:

φ-угол сдвига фаз между током и напряжением.

При равномерной нагрузке трехфазной системы мощность, потребляемая каждой фазой, одинакова, поэтому мощность всех трех фаз

Активную мощность трехфазного переменного тока при соединении звездой и треугольником определяют по формуле

Понятие о cos φ и меры его увеличения. Кроме активной, в электрической цепи существует реактивная мощность. Активная и реактивная мощности составляют полную мощность S. Активная мощность Ра расходуется в цепи при выделении тепла или совершении полезной работы, а реактивная Рр — при нарастании тока на создание магнитных полей в индуктивной части цепи. При уменьшении тока цепь становится как бы генератором и энергия, запасенная в ней, передается генератору, питающему эту цепь. Такое передвижение энергии от генератора в цепь и обратно загружает линию и обмотку генератора, обусловливая лишние потери энергии в них. Отношение активной мощности к полной называют коэффициентом мощности. Он показывает, какая часть полной мощности фактически потребляется цепью, и подсчитывается по формуле

Таким образом, коэффициент мощности для синусоидального переменного тока и есть косинус угла сдвига фаз между током и напряжением.

Уличение cos φ зависит от типа, мощности и числа оборотов вновь устанавливаемых двигателей, увеличения их загрузки и т. д.

Понятие о тепловом действии тока. При прохождении тока по проводнику последний нагревается. Русский академик Э. X. Ленц и английский физик Д. П. Джоуль одновременно и независимо один от другого установили, что при прохождении электрического тока по проводнику количество теплоты, выделямое проводником, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого ток протекал по проводнику. Это положение называется законом Джоуля — Ленца и определяется по формуле:

где Q — количество теплоты, кал;

I— ток, протекающий по проводнику, а;

R — сопротивление проводника, ом;

Для предохранения электротехнических устройств от чрезмерных нагревов в электрическую цепь включают легкоплавкие предохранители, а для защиты электрических двигателей при токовых перегрузках, применяют тепловое максимальное реле.

Электроизмерительные приборы. Электроизмерительные приборы применяют для измерения различных электрических величин: тока, напряжения, сопротивления и т. д. По роду измеряемой величины приборы делятся на амперметры, измеряющие ток, вольтметры, измеряющие напряжение, омметры, измеряющие сопротивление, и т. д. Электроизмерительные приборы состоят из подвижной и неподвижной частей. К подвижной части прибора прикреплена указательная стрелка, по которой ведется отсчет измеряемой величины на неподвижной шкале. Сущность работы электроизмерительного прибора состоит в том, что проходящий через его катушки ток вызывает поворот подвижной части прибора, в результате чего стрелка отклоняется на определенный угол. Амперметры, измеряющие ток в электрической цепи, включают последовательно, а вольтметры — параллельно. По роду тока приборы делятся на приборы, измеряющие только переменный или постоянный ток, и приборы, измеряющие и переменный и постоянный ток.

Электроизмерительные приборы подразделяются на семь классов точности: 0,1; 0,2; 0,5; 1; 1,5; 2,5 и 4. Цифра класса точности указывает величину основной допускаемой погрешности прибора от его наибольшего показания. Так, если вольтметр рассчитан на 150 в, а его класс точности 2,5, то при измерении напряжения этим прибором возможная погрешность составит 2,5%.