- Регулировка оборотов трехфазного асинхронного двигателя
- Частотник для регулировки оборотов электродвигателей, особенности использования и варианты регулировки
- Устройство и принцип работы, структура частотного регулятора
- Основные элементы, которые входят в структуру частотного преобразователя
- Структура частотного регулятора
- Частотные преобразователи для однофазного асинхронного электродвигателя
- Особенности использования регуляторов скорости для однофазных электродвигателей
- Популярные модели регуляторов скорости для однофазного двигателя
- Регулятор оборотов электродвигателя: назначение, принцип работы
- Назначение
- Принцип работы
- Как выбрать?
- Подключение
- регулировка скорости асинхронного двигателя
- Самостоятельное изготовление регулятора оборотов электродвигателя
- Устройство системы
- Схема регулятора оборотов коллекторного двигателя
- Зачем используют такой прибор-регулятор
- Регулятор оборотов электродвигателя 220в
- Как сделать регулятор своими руками
- Внедрение системы управления
- Регулировка работы
- Несколько способов управления однофазным асинхронным двигателем
Регулировка оборотов трехфазного асинхронного двигателя
Частотник для регулировки оборотов электродвигателей, особенности использования и варианты регулировки
-
1 commentПрименение 14 февраля, 2019
Регулируемый асинхронный привод широко распространен и популярен так, что фактически заменил собой синхронные электродвигатели и привод постоянного тока.
Варианты регулировки скорости электродвигателя включают несколько существующих способов:
- Изменение подачи напряжения;
- Переключение обмоток асинхронных двигателей;
- Частотная регулировка скорости электродвигателя с помощью изменения токовых величин;
- Применение электронного коммутатора.
Во многом это произошло благодаря появлению частотных преобразователей, обеспечивающих энергетические и динамические показатели. Использование частотного регулятора скорости считается самым прогрессивным и востребованным методом, входящим в способы регулировки оборотов вращения асинхронных двигателей.
Основное предназначение, которое выполняет частотный регулятор скорости для асинхронного двигателя основывается на осуществлении питания таким образом, чтобы рабочие характеристики агрегата радикально отличались от обычных параметров, получаемых из сети. При этом напряжение в сети и частота должны остаться неизменными.
Устройство и принцип работы, структура частотного регулятора
Принцип работы частотного регулятора для асинхронного двигателя заключается в питании электродвигателя переменным напряжением с меняющимися по необходимости, параметрами амплитуды и частоты. При этом поддержка соотношения напряжение/частота остаются четко определенными и неизменными. Генерирование переменного напряжения происходит благодаря силовому электронному преобразователю.
Рис. №1 Принципиальная схема преобразователя частоты.
Принцип работы подразумевает использование широтно-импульсной модуляции. Принцип подразумевает подачу импульсного напряжения на обмотки двигателя с амплитудой равной напряжению, полученному от выпрямителя. Импульсы модулированы по ширине и создают напряжение переменного тока с изменяющейся амплитудой. Наглядным примером могут считаться кривые междуфазного напряжения и тока в одной обмотке двигателя при соединении обмоток треугольником.
Рис. №2 График напряжения на выходе ШИМ и ток в двигательной обмотке при соединении трехфазного асинхронного двигателя в треугольник.
Основные элементы, которые входят в структуру частотного преобразователя
Частотный преобразователь состоит из следующих компонентов:
- Мостовой выпрямитель на 1 или 3 фазы, оборудован конденсатором на выходе, является источником постоянного напряжения.
- Мостовой инвертор (IGBT) питается постоянным напряжением с помощью широтно-импульсного метода модуляции, служит для генерации напряжения переменного тока с изменяемой амплитудой и частотой.
- Модуль управления, который подает команды проводимости на инвертор. Они зависят от сигналов, подаваемых оператором и сведений о результатах измерений электрических величин (сетевое напряжение, нагрузочный ток двигателя).
Структура частотного регулятора
В настоящее время детально разработаны и широко применяются две основные топологии многоуровневых частотных преобразователей. Это каскадные и преобразователи на базе многоуровневых частотных инверторов напряжения.
Рис. №3 Структурная схема частотного преобразователя многоуровневого типа высокого напряжения, построенная на базе IGBT-транзисторов с воздушным или водяным охлаждением.
В состав устройства включен многообмоточный трансформатор. К особенностям схемы относится наличие силовых ячеек с последовательным соединением, благодаря чему на выходе устройства получается суммарное высокое напряжение. Подобная схема служит для получения формы выходного напряжения практически приближенной к идеальному синусу. Наличие шунтируемых в момент неисправности ячеек обуславливает высокую надежность схемы.
Как продолжение предыдущей схемы рассмотрим схему преобразователя на базе трансформаторного многоуровневого инвертора напряжения с широтно-импульсной модуляцией с применением IGBT-модулей. Для устройства характерна фиксированная частота ШИМ – 3кГц. В структуру устройства включены система защиты с использованием микропроцессора.
Рис. 4 Структурная схема преобразователя.
На схеме видно, что все блоки функционально взаимосвязаны. На схеме показано как работает частотный регулятор для асинхронного двигателя, устройство и принцип работы.
В первом блоке находится входной трансформатор, в блоке осуществляется передача электроэнергии от трехфазного высоковольтного источника питания. От многоуровневого трансформатора производится распределение пониженного напряжения в шкаф инвертора на многоуровневый инвертор.
Шкаф инвертора включает в состав многоуровневый трехфазный инвертор, состоящий из ячеек – преобразователей. В каждой находится шестиимпульсный фильтр для выпрямления звена постоянного тока и мостовой инвертор напряжения на IGBT-транзисторах. По схеме происходит выпрямление входного переменного тока, который благодаря инвертору изменяется в переменный ток, обладающий регулируемыми показателями частоты и напряжения.
В шкафу защиты управления находятся микропроцессорный блок, обладающий многофункциональными возможностями и системой питания от ТСН преобразователя, устройство ввода преобразователя и первичные сенсоры, обозначающие режимы работы преобразователя.
Микропроцессор служит для формирования сигналов управления инвертором в зависимости от обозначенного алгоритма работы. Он служит для обработки сведений, собранных с датчиков напряжения и тока. Микропроцессор формирует сигналы для управления защитами и аварийными кнопками управления, корректирует алгоритм управления.
Для передачи сведений и связи используется оптоволоконный кабель. Для бесперебойной работы имеется независимый встроенный источник питания. Редактирование параметров выполняется пультом дистанционного управления.
Для надежного отключения и безопасного проведения различного рода работ преобразователь оборудован линейным разъединителем.
Рис. №5 Обобщенная схема ячейки преобразователя
Источники управляемого переменного напряжения формируют фазу напряжения для выполнения их последовательного соединения. Выходная схема питающей сети асинхронного двигателя происходит по схеме соединения обмоток «Звезда». Напряжение в трехфазном инверторе распределяется по схеме.
Рис. №6 Схема распределения напряжения в инверторе на три фазы.
Частотные преобразователи для однофазного асинхронного электродвигателя
Использование малогабаритных частотных преобразователей применяется при управлении скоростью вращения однофазных двигателей, применяемых в конструкциях бытовых устройств и для производства технологических процессов. Подробней про регулирование однофазного асинхронного двигателя с помощью частотного преобразователя смотрите здесь.
Частотный регулятор скорости для асинхронного двигателя будет необычайно актуальным в схемах управления такими приборами, как кондиционеры воздуха, холодильные камеры, электрические вентиляторы, насосы, все оборудование с использованием асинхронных электродвигателей.
Особенности использования регуляторов скорости для однофазных электродвигателей
В конструкцию частотного регулятора входит несколько элементов, обеспечивающих эффективность работы устройства, к ним относятся:
- Встроенный конвертер интерфейсов RS485 (работает опционно);
- Встроенный ПЛК контроллер;
- Встроенный ПИД-регулятор (формирует сигнал для управления устройством).
К преимущественным особенностям использования регуляторов скорости относятся инновационные технологии векторного управления. Значительная энергосберегающая эффективность – это функция, которая обеспечивается в автоматическом режиме. Управление регулятором скорости можно выполнять с помощью дистанционного пульта управления, минимальное расстояние для управления 5м.
Важно: в конструкции преобразователя частоты предусмотрена возможность автоматически регулировать выходное напряжение.
Популярные модели регуляторов скорости для однофазного двигателя
Среди многообразия устройств, выполняющих функцию управления электродвигателем, существуют две основные разновидности моделей регуляторов оборотов. Это электронные тиристорные однофазные регуляторы скорости, которые работают за счет плавного изменения напряжения питания. Вторая разновидность моделей регуляторов оборотов – трансформаторный однофазный регулятор скорости. Его работа заключается в изменении положения трехступенчатого кулачкового переключателя, с помощью которого происходит изменение комбинации переключения обмоток.
Частотное управление регулированием скоростью асинхронного электродвигателя в наше время является техническим стандартом. Использование частотного регулятора вытеснило очень многие способы управления. Симметричное и несимметричное управление напряжением и использование добавочных сопротивлений, изменение числа пар полюсов ушли в прошлое.
Регулятор оборотов электродвигателя: назначение, принцип работы
В большинстве современных бытовых и промышленных приборов применяются электрические машины, совершающие какую-либо полезную работу. В качестве рабочего инструмента в них могут выступать самые разнообразные приспособления, которые необходимо вращать с различной скоростью. Для изменения этого параметра используется регулятор оборотов электродвигателя.
Назначение
Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.
Однако на практике данная опция может преследовать и другие цели:
- Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
- Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
- Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
- Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
- Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
- Обеспечения достаточного момента на низких частотах вращения электрической машины.
Возможность реализации тех или иных функций у регуляторов оборотов определяет как принцип их действия, так и схематическое исполнение.
Принцип работы
Для регулировки оборотов может использоваться способ понижения или повышения напряжения, изменение силы тока и частоты, подаваемых в обмотки асинхронных и коллекторных электродвигателей. Поэтому далее рассмотрим варианты частотных преобразователей и регуляторов напряжения.
Среди используемых в промышленной и бытовой сфере следует выделить:
- Введение рабочего сопротивления – реализуется при помощи переменных резисторов, делителей и прочих преобразователей. Хорошо обеспечивает снижение в однофазных двигателях за счет контроля скольжения (разницы между магнитным полем статора и скоростью вращения асинхронных агрегатов). Для этого устанавливаются электродвигатели большей мощности, чтобы на них можно было подавать меньшее напряжение. Соотношение по скорости оборотов будет составлять до 2 раз в сторону уменьшения.
- Автотрансформаторный – выполняется путем перемещения подвижного контакта по обмотке, что снижает или увеличивает скорость вращения электродвигателя. Преимущество такого принципа заключается в четкой синусоиде переменного тока и большой перегрузочной способности.
- Тиристорный или симисторный – изменяет величину питающего напряжения посредством пары встречно включенных тиристоров или совместного включения с симистором. Этот способ применим не только в асинхронных двигателях, но и других бытовых приборах – диммерах, переключателях и т.д.
Рис. 1. Схема тиристорного регулятора
Как видите на схеме, подаваемое на тот же асинхронный однофазный электродвигатель напряжение, проходит через переменный резистор R1 на тиристор D1 и на управляющий электрод симистора T1. Перемещая ручку тиристорного регулятора R1 изменяем и скорость вращения однофазного электродвигателя.
- Транзисторный – позволяет изменять форму подаваемого напряжения за счет преобразования числа импульсов и временной паузы между подаваемым напряжением. Благодаря чему получил название широтно-импульсной модуляции, пример такого регулятора приведена на схеме ниже.
Регулировка оборотов на транзисторах
Здесь питание однофазного асинхронного двигателя производится от линии 220В через выпрямительный блок VD1-4, далее напряжение поступает на эмиттер и коллектор транзисторов VT1 и VT2. Подавая управляющий сигнал на базы этих транзисторов, и регулируют обороты мотора.
- Частотный – преобразует частоту подаваемого напряжения на обмотки однофазного или трехфазного асинхронного электродвигателя. Это наиболее современный способ, ранее он относился к дорогостоящим, но с появлением дешевых высоковольтных полупроводников и микроконтроллеров перешел в разряд наиболее эффективных. Может реализовываться с помощью транзисторов, микросхем или микроконтроллеров, способных уменьшать или увеличивать частоту ШИМ.
Пример частотного регулирования
- Полюсный – позволяет регулировать частоту вращения электродвигателя при переключении количества катушек в фазных обмотках, в результате чего изменяется направление и величина тока, протекающего в каждой из них. Реализуется как за счет намотки нескольких катушек для каждой из фаз, так и одновременным последовательным или параллельным соединением катушек, такой принцип приведен на рисунке ниже.
Регулировка оборотов переключением пар полюсов
Как выбрать?
Конкретная модель регулятора оборотов должна подбираться в соответствии с типом подключаемой электрической машины – коллекторный двигатель, трехфазный или однофазный электродвигатель. В соответствии с чем и подбирается определенный преобразователь частоты вращения.
Помимо этого для регулятора оборотов необходимо выбрать:
- Тип управления – выделяют два способа: скалярный и векторный. Первый из них привязывается к нагрузке на валу и является более простым, но менее надежным. Второй отстраивается по обратной связи от величины магнитного потока и выступает полной противоположностью первого.
- Мощность – должна выбираться не менее или даже больше, чем номинал подключаемого электродвигателя на максимальных оборотах, желательно обеспечивать запас, особенно для электронных регуляторов.
- Номинальное напряжение – выбирается в соответствии с величиной разности потенциалов для обмоток асинхронного или коллекторного электродвигателя. Если вы подключаете к заводскому или самодельному регулятору одну электрическую машину, будет достаточно именно такого номинала, если их несколько, частотный регулятор должен иметь широкий диапазон по напряжению.
- Диапазон частот вращения – подбирается в соответствии с конкретным типом оборудования. К примеру, для вращения вентилятора достаточно от 500 до 1000 об/мин, а вот станку может потребоваться до 3000 об/мин.
- Габаритные размеры и вес – выбирайте таким образом, чтобы они соответствовали конструкции оборудования, не мешали работе электродвигателя. Если под регулятор оборотов будет использоваться соответствующая ниша или разъем, то размеры подбираются в соответствии с величиной свободного пространства.
Подключение
Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.
Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:
Схема подключения регулятора
Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:
Распиновка регулятора
Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.
Проверьте цветовую маркировку
Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.
регулировка скорости асинхронного двигателя
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.
Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.
Регулировка скорости асинхронного двигателя не такая простая задача. В общем случае для снижения/увеличения скорости при постоянном крутящем моменте следует пропорционально снижать/увеличивать частоту тока и напряжение, что и делает любой нормальный частотный привод. Лучше купить готовый, на такую мощность меньше $200 можно найти.
2Casper ,
174 евро бюджет выдержит ?
Частотник Веспер EI-2MINI S1L (0,75kW) мы брали по 160 причем долларов.
» >
Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.
Если двигатель трехфазный, то не так уж и сложно. хотя.
недавно делал схемку . 3 плеча по два транзистора IRF840 (мостовачя схема в ключевом режиме на три фазы), транзисторы управляются тремя драйверами IR2112, которые в свою очередь управляются микроконтроллером ATmega8. Скорость регулируется переменным резистором на аналоговом входе контроллера, частота вращения зависит от частоты переключения транзисторов, уровень напряжения зависит от скважности высокочастотного ШИМ заполнения. все очень неплохо работает. Подробности интересуют?
Блок управления асинхронником (до 1 килловата) можно собрать всего на одной специализированной мотороловской микросхеме — MC3PHAC. Все равно, дешевле получится.
Если заинтересовало, можно почитать статью «Микроконтроллеры компании Freescale/Motorola для систем управления электроприводом» в журнале Электронные компоненты за номером ‘7’ от 2004 года.
Freescale Semiconductor — это подразделение полупроводников в Motorola.(freescale.com)
спасибоза помощь, но меня все-таки интересует регулировка скорости на конденсаторах.
Casper
Вы не правы в принципе. На конденсаторах делается сдвиг фазы для питания трехфазника от однофазной сети. Хорошо работает только на определенных оборотах, почему и требует дополнительного пускового конденсатора. Соответственно, можно сделать неправильно, так чтобы не хватило мощности для раскрутки до полных оборотов. Греться будет нехило. Регулировкой оборотов я бы это не назвал.
вставляешь в каждую фазу последовательно 3 одинаковых кон-ра емкостью от10 до 1мкф , чем ниже емкость, тем ниже скорость вращения.
да смотри напряжение не ниже 400вольт чтоб было, а так-же смотри електролитические НЕ ВЛЯПАЙ— взорвутся!
Кстати, электролиты тоже можно, но парой последовательно встречно, диодами зашунтированные.
P.S. Изврат все это.
astronom написал :
вставляешь в каждую фазу последовательно 3 одинаковых кон-ра емкостью от10 до 1мкф , чем ниже емкость, тем ниже скорость вращения.
- Это за счёт потери мощности. На такой установке можно только ножи точить.
Casper написал :
Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать.
Так если надо только ступенчато и не плавно, то может простыми шкивами с ремнем обойтись?
(Как у сверлильного станка).
Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.
слышал что повысить частоту (соответственно скорость) в два раза можно с помощью диодного моста.
Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.
Подключение трехфазного асинхронного электродвигателя в однофазную сеть через конденсатор, со схемой соединения обмоток треугольник
» >
Подключение трехфазного асинхронного электродвигателя в однофазную сеть через конденсатор, со схемой соединения обмоток звезда
» >
слышал что повысить частоту (соответственно скорость) в два раза можно с помощью диодного моста.
Можно. Вот только напряжение при этом снизится, тоже вдвое.
Casper написал :
Уважаемые Мастера! Посоветуйте ,пожалуйста, каким образом можно регулировать скорость асинхронного двигателя мощностью 0,7 квт.Можно регулировать ступенчато 2-3 скорости. Можно, конечно купить готовые регуляторы , но мой бюджет не позволяет этого сделать. Слышал ,можно регулировать с помощью конденсаторов, но как и какими?
Заранеее благодарен.
Щас всех убью и съем. Один останусь. По детству рисовал курсовую по САР ТВС с ЧПУ.
Там стояли контроллеры Кемрос — Кемток, кажись болгарские. Привода суппорта через винтовую пару (без самоторможения) были выполнены НА АСИНХРОННЫХ ДВИГАТЕЛЯХ. ВОт а теперь все замерли: смертельный номер. (ЛИТАВРЫ) ТОчность выдержки этого привода составляла. УГЛОВЫЕ МИНУТЫ.
И все на мелкой логике. ВАУ. Матарола.
Теперь с небес на землю: ротор на асинхроннике — белка? Иди со щетками? Кондерами, это скорее за счет скольжения. А вообще, лучше дараматизируйте, то есть конкретизируйте задачу. Ибо если это привод слежения телескопа — то одно. А если осевой вентилятор из приточки — совершенно третье.
Приятного погружения в инферно электропривода. (а то в свое время как меня преподы этими электромашинами затиранили. )
Самостоятельное изготовление регулятора оборотов электродвигателя
Регулятор оборотов в двигателе нужен для совершения плавного разгона и торможения. Широкое распространение получили такие приборы в современной промышленности. Благодаря им происходит измерение скорости движения в конвейере, на различных устройствах, а также при вращении вентилятора. Двигатели с производительностью на 12 Вольт применяются в целых системах управления и в автомобилях.
- Устройство системы
- Схема регулятора оборотов коллекторного двигателя
- Зачем используют такой прибор-регулятор
- Регулятор оборотов электродвигателя 220в
- Как сделать регулятор своими руками
- Внедрение системы управления
- Регулировка работы
Устройство системы
Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.
- Ротор — это часть вращения, статор — это внешний по типу магнит.
- Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
- Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
- Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.
Схема регулятора оборотов коллекторного двигателя
В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.
Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.
Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.
Зачем используют такой прибор-регулятор
Если говорить про двигатели регуляторов, то обороты нужны:
- Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
- Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
- Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
- Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.
Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.
Регулятор оборотов электродвигателя 220в
Его можно изготовить совершенно самостоятельно, но для этого нужно будет изучить все возможные технические особенности прибора. По конструкции можно выделить сразу несколько разновидностей главных деталей. А именно:
- Сам электродвигатель.
- Микроконтроллерная система управления блока преобразования.
- Привод и механические детали, которые связаны с работой системы.
Перед самым началом запуска устройства, после подачи определённого напряжения на обмотки, начинается процесс вращения двигателя с максимальным показателем мощности. Именно такая особенность и будет отличать асинхронные устройства от остальных видов. Ко всему прочему происходит прибавление нагрузки от механизмов, которые приводят прибор в движение. В конечном счёте на начальном этапе работы устройства мощность, а также потребляемый ток лишь возрастают до максимальной отметки.
В это время происходит процесс выделения наибольшего количества тепла. Происходит перегрев в обмотках, а также в проводах. Использование частичного преобразования поможет не допустить этого. Если произвести установку плавного пуска, то до максимальной отметки скорости (которая также может регулироваться оборудованием и может быть не 1500 оборотов за минуту, а всего лишь 1000) двигатель начнёт разгоняться не в первый момент работы, а на протяжении последующих 10 секунд (при этом на каждую секунду устройство будет прибавлять по 100−150 оборотов). В это время процесс нагрузки на все механизмы и провода начинает уменьшаться в несколько раз.
Как сделать регулятор своими руками
Можно совершенно самостоятельно создать регулятор оборотов электродвигателя около 12 В. Для этого стоит использовать переключатель сразу нескольких положений, а также специальный проволочный резистор. При помощи последнего происходит изменение уровня напряжения питания (а вместе с этим и показателя частоты вращения). Такие же системы можно применять и для совершения асинхронных движений, но они будут менее эффективными.
Ещё много лет назад широко использовались механические регуляторы — они были построены на основе шестеренчатых приводов или же их вариаторов. Но такие устройства считались не очень надёжными. Электронные средства показывали себя в несколько раз лучше, так как они были не такими большими и позволяли совершать настройку более тонкого привода.
Для того чтобы создать регулятор вращения электродвигателя, стоит использовать сразу несколько устройств, которые можно либо купить в любом строительном магазине, либо снять со старых инвенторных устройств. Чтобы совершить процесс регулировки, стоит включить специальную схему переменного резистора. С его помощью происходит процесс изменения амплитуды входящего на резистор сигнала.
Внедрение системы управления
Чтобы значительно улучшить характеристику даже самого простого оборудования, стоит в схему регулятора оборотов двигателя подключить микроконтроллерное управление. Для этого стоит выбрать тот процессор, в котором есть подходящее количество входов и выходов соответственно: для совершения подключения датчиков, кнопок, а также специальных электронных ключей.
Для осуществления экспериментов стоит использовать особенный микроконтроллер AtMega 128 — это наиболее простой в применении и широко используемый контроллер. В свободном использовании можно найти большое число схем с его применением. Чтобы устройство совершало правильную работу, в него стоит записать определённый алгоритм действий — отклики на определённые движения. К примеру, при достижении температуры в 60 градусов Цельсия (замер будет отмечаться на графике самого устройства), должно произойти автоматическое отключение работы устройства.
Регулировка работы
Теперь стоит поговорить о том, как можно осуществить регулировку оборотов в коллекторном двигателе. В связи с тем, что общая скорость вращения мотора может напрямую зависеть от величины подаваемого уровня напряжения, для этого вполне пригодны совершенно любые системы для регулировки, которые могут осуществлять такую функцию.
Стоит перечислить несколько разновидностей приборов:
- Лабораторные автотрансформеры (ЛАТР).
- Заводские платы регулировки, которые применяются в бытовых устройствах (можно взять даже те, которые используются в пылесосах, миксерах).
- Кнопки, которые применяются в конструкции электроинструментов.
- Бытовые разновидности регуляторов, которые оснащены особым плавным действием.
Но при этом все такие способы имеют определённый изъян. Совместно с процессами уменьшения оборотов уменьшается и общая мощность работы мотора. Иногда его можно остановить, даже просто дотронувшись рукой. В некоторых случаях это может быть вполне нормальным, но по большей части это считается серьёзной проблемой.
Наиболее приемлемым вариантом станет выполнение функции регулировки оборотов при помощи применения тахогенератора.
Его чаще всего устанавливают на заводе. Во время отклонения скорости вращения моторов через симистры в моторе будет происходить передача уже откорректированного электропитания, сопутствующего нужной скорости вращения. Если в такую ёмкость будет встроена регулировка вращения самого мотора, то мощность не будет потеряна.
Как же это выглядит в виде конструкции? Больше всего используется именно реостатная регулировка процесса вращения, которая создана на основе применения полупроводника.
В первом случае речь пойдёт о переменном сопротивлении с использованием механического процесса регулировки. Она будет последовательно подключена к коллекторному электродвигателю. Недостатком в этом случае станет дополнительное выделение некоторого количества тепла и дополнительная трата ресурса всего аккумулятора. Во время такой регулировки происходит общая потеря мощности в процессе совершения вращения мотора. Он считается наиболее экономичным вариантом. Не используется для довольно мощных моторов по вышеуказанным причинам.
Во втором случае во время применения полупроводников происходит процесс управления мотором при помощи подачи определённого числа импульсов. Схема способна совершать изменение длительности таких импульсов, что, в свою очередь, будет изменять общую скорость вращения мотора без потери показателя мощности.
Если вы не хотите самостоятельно изготавливать оборудование, а хотите купить уже полностью готовое к применению устройство, то стоит обратить особое внимание на главные параметры и характеристики, такие, как мощность, тип системы управления прибором, напряжение в устройстве, частоту, а также напряжение рабочего типа. Лучше всего будет производить расчёт общих характеристик всего механизма, в котором стоит применять регулятор общего напряжения двигателя. Стоит обязательно помнить, что нужно производить сопоставление с параметрами частотного преобразователя.
Несколько способов управления однофазным асинхронным двигателем
Достоинства и недостатки различных способов управления асинхронными двигателями. Выводы, сделанные по опыту практического применения.
В настоящее время получили большое распространение асинхронные электродвигатели с короткозамкнутым ротором. Это вызвано тем, что такие машины не имеют щеточного узла, их ротор сделан из алюминия и технологически очень прост, а значит, сама конструкция получается очень надежной. Рассмотрим несколько способов управления однофазным асинхронным электродвигателем.
Конденсаторный однофазный электродвигатель
Наиболее распространенным типом асинхронного однофазного электродвигателя является двигатель с двумя статорными обмотками. Первая и вторая обмотки идентичны по количеству витков, но последовательно с одной из обмоток включают конденсатор. Конденсатор обеспечивает сдвиг фаз между обмотками для образования вращающегося магнитного поля для ротора.
Частотный способ управления
Основным способом управления таким двигателем, применяемым в настоящее время, является частотный способ. Этот способ реализуется с помощью специальных приборов, называемых ШИМ инверторами. Эти инверторы, в свою очередь, бывают однофазными и трехфазными, что определяется количеством пар силовых выходов для управления обмотками двигателя. Для управления однофазным двигателем может быть применен как однофазный, так и трехфазный инвертор. Пример самодельной конструкции — частотный преобразователь своими руками.
Управление однофазным ШИМ инвертором
При таком управлении обе обмотки двигателя включены параллельно. Два выхода инвертора подключаются к точкам соединения обмоток. Инвертор формирует напряжение с варируемой частотой и с линейной зависимостью напряжение к частоте. Регулировать частоту можно как вниз, так и вверх. Диапазон регулировки обычно не превышает 1:10, т.к. емкость конденсатора в одной из обмоток напрямую зависит от частоты.
Достоинства
Основные достоинства этого метода – это простота ввода в эксплуатацию, не требующая переделки конструкции двигателя; надежная работа, т.к. частотный преобразователь специально разработан для управления такими типами двигателей; хорошие характеристики (ПИД-регулятор, предустановленные скорости, низкий пусковой ток, защитные функции и т.д.)
Недостатки
К недостаткам относятся: только однонаправленное вращение; более высокая стоимость и дефицит однофазных преобразователей по сравнению с трехфазными, по причине их малого выпуска.
Управление трехфазным ШИМ инвертором
В данном случае обмотки двигателя включают последовательно. Выходы трехфазного преобразователя подключают к средней точке и к концам обмоток электродвигателя. Конденсатор при этом из схемы исключают (требуется некоторая переделка двигателя) Так как обмотки двигателя сдвинуты на 90 градусов, а инвертор дает сдвиг фаз на 120 градусов, то поле не будет идеально круговым и это отрицательно скажется на параметрах регулирования.
Поле будет пульсирующим. Так как порядок коммутации выводов инвертора можно менять программным путем, то легко добиться изменения чередования напряжений на обмотках, следовательно, менять направление вращения ротора двигателя.
Достоинства
К достоинствам следует отнести: доступность на рынке и сравнительно низкую цену; возможность реверсивной работы обычного нереверсивного двигателя; более широкий, чем у однофазного преобразователя диапазон регулировки; возможности программируемых функций как у однофазного инвертора или даже шире за счет большего количества коммутируемых выходов.
Недостатки
Недостатки это: пониженный и пульсирующий момент однофазного двигателя; повышенный его нагрев; не все стандартные преобразователи готовы для такой работы, т.к. некоторые производители прямо запрещают использовать свои изделия в таком режиме.
Фазовое управление с помощью симисторного регулятора (диммера)
Этот метод самый «древний», он обусловлен отсутствием до недавнего времени в широкой продаже частотных регуляторов и их относительно высокой ценой. При таком управлении обмотки двигателя остаются включенными параллельно. Одна из обмоток включена последовательно с фазосдвигающим конденсатором. К точкам параллельного соединения обмоток подключается симисторный регулятор.
На выходе этого регулятора формируется однофазное напряжение с постоянной частотой (50 Гц) и регулируемым среднеквадратическим значением. Это происходит за счет регулирования напряжения открывания симистора, т.е. изменяется время открытого состояния симистора за период следования сетевого напряжения.
Момент на валу двигателя, при таком регулировании, будет снижаться пропорционально напряжению, критическое скольжение будет неизменным.
Достоинства
Основные достоинства: исключительная простота устройства управления; возможность собрать и починить такое устройство любым радиолюбителем; на порядок или даже несколько порядков более низкая цена по сравнению с частотными приводами.
Недостатки
Основные недостатки это: регулирование оборотов только на понижение; диапазон регулирования с помощью диммера только 2:1; стабильность скорости только удовлетворительная; допустимая нагрузка резко снижается с уменьшением скорости; перегрев двигателя на низких скоростях, т.к. не хватает производительности встроенного вентилятора двигателя; необходимость завышения мощности двигателя.
Выводы
Исходя из всего вышеперечисленного, необходимо настоятельно рекомендовать применение частотных приводов для управления асинхронными двигателями. Такие приводы (ШИМ инверторы) кроме несомненных удобств по управлению, позволяют получить высокий КПД установок и добиться роста коэффициента мощности (cos фи) до 0.98, т.е. реализовать программу энергосбережения.