Трехфазный мостовой выпрямитель принцип действия

Невысокие темпы инфляции способствуют увеличению прибылей и оживлению рыночной конъюнктуры а потому могут положительно сказываться на экономическом... Особого внимания заслуживает вопрос о взаимозависимости между темпом роста цен...
Содержание
  1. Трехфазный мостовой выпрямитель принцип действия
  2. Трехфазная мостовая схема выпрямления. Схема и принцип действия.
  3. Принцип действия и схема трехфазного мостового выпрямителя
  4. Описание выпрямителей
  5. Принцип действия
  6. Однополупериодный многофазный выпрямитель
  7. Двухполупериодный выпрямитель
  8. Мостовые устройства
  9. Особенности трехфазного моста и варианты его построения
  10. Сравнение однофазных и трехфазных устройств
  11. Принцип действия и схема трехфазного мостового выпрямителя
  12. Описание выпрямителей
  13. Принцип действия
  14. Однополупериодный многофазный выпрямитель
  15. Двухполупериодный выпрямитель
  16. Мостовые устройства
  17. Особенности трехфазного моста и варианты его построения
  18. Сравнение однофазных и трехфазных устройств
  19. Как устроен трехфазный выпрямитель
  20. Принцип работы и схемы
  21. Мостовой тип устройства
  22. Свойства трехфазного напряжения
  23. Работа диодного моста
  24. Действие схемы
  25. ТРЕХФАЗНЫЙ МОСТОВОЙ ВЫПРЯМИТЕЛЬ

Трехфазный мостовой выпрямитель принцип действия

Трехфазная мостовая схема выпрямления. Схема и принцип действия.

Схема содержит трехфазный трансформатор, 6 диодов и активную нагрузку. Схема представляет собой сочетание двух трехфазных выпрямителей, включенных последовательно и питающихся от общих обмоток трансформатора напряжениями, сдвинутыми по фазе на 120 градусов.

Принцип работы: ток проводят в любой момент времени два последовательно соединенных диода, на аноде которого положительный наибольший потенциал и на катоде которого отрицательный наибольший потенциал.

Схема является двухполупериодной, так как ток через нагрузку протекает в течение обоих полупериодов питающего напряжения. Схема является двухтактной, так как токи во вторичных обмотках протекают в течение обоих полупериодов питающего напряжения. Токи вторичных обмоток имеют синусоидальную форму, поэтому отсутствует вынужденное намагничивание сердечника трансформатора.

2. Расчетные соотношения для трехфазной мостовой схемы выпрямителя

Действующее значение тока через вторичную обмотку:

I

Действующее значение фазного напряжения вторичной обмотки:

U

Действующее значение линейного напряжения вторичной обмотки:

U

Действующее значение тока первичной обмотки:

I

Обратное напряжение на диоде:

U

Типовая мощность трансформатора:

Р

I

Частота основной гармоники выпрямленного напряжения (тока):

f

Коэффициент пульсаций = 0,057.

Преимущества: меньше вес и размеры трансформатора, отсутствует вынужденное намагничивание, меньше пульсации напряжения, больше частота пульсаций

Основной недостаток: необходимость применения 6 диодов.

3. Влияние характера нагрузки на работу выпрямителя.

Работа выпрямителя на встречную ЭДС. При таком режиме параллельно зажимам выпрямителя включен источник постоянного ЭДС.

Особенности: уменьшаются пульсации выпрямленного напряжения; уменьшается время прохождения тока через диоды.

Применение: для зарядки аккумуляторной батареи.

Работа выпрямителя на нагрузку с емкостной реакцией. Параллельно нагрузке включается конденсатор. Этот режим имеет место при использовании конденсаторов в качестве первого элемента сглаживающего фильтра. По мере роста напряжения на зажимах вторичной обмотке трансформатора конденсатор заряжается, и напряжение на нем повышается. Так как напряжение на емкости отстает от напряжения фазы вторичной обмотки, то в течение режима всего времени заряда емкости напряжение на ней будет оставаться меньшим напряжения на обмотке и только в момент прекращения тока через диод эти напряжения окажутся равными.

Особенности режима: уменьшаются пульсации выпрямленного напряжения; сокращается время работы диодов; амплитудное значение тока через диоды и трансформатор увеличивается.

Недостатки режима: плохо используются обмотки трансформатора; величина выпрямленного напряжения зависит от тока нагрузки.

Работа выпрямителя на индуктивную нагрузку. Последовательно с нагрузкой включена индуктивность. Этот режим имеет место, когда в качестве первого элемента используется дроссель.

Наличие индуктивного элемента приводит к отставанию по времени изменение тока от изменения напряжения, что влияет на режим работы выпрямителя.

Особенности режима: длительность работы диода уменьшается; амплитудное значение тока уменьшается; среднее значение выпрямленного тока уменьшается.

Таким образом, в лекции изучены: принцип действия, достоинства и недостатки, основные расчетные соотношения трехфазной мостовой схемы выпрямления, а также влияние характера нагрузки на работу выпрямителя.

| следующая лекция ==>
ЭТАПЫ ОПЕРАЦИИ СУБТОТАЛЬНОЙ СУБКАПСУЛЯРНОЙ РЕЗЕКЦИИ ЩИТОВИДНОЙ ЖЕЛЕЗЫ | Общественно опасное деяние (действие или бездействие) и его уголовно-правовая характеристика.

Дата добавления: 2015-12-01 ; просмотров: 4740 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Принцип действия и схема трехфазного мостового выпрямителя

Пользователям силовых цепей 380 Вольт в домашнем хозяйстве нужен пассивный (неуправляемый) трехфазный выпрямитель. Знание некоторых особенностей электронного устройства и существующих схем выпрямления окажется очень полезным. Это поможет владельцу силового оборудования эксплуатировать его более грамотно и рационально в течение длительного времени.

  1. Описание выпрямителей
  2. Принцип действия
  3. Однополупериодный многофазный выпрямитель
  4. Двухполупериодный выпрямитель
  5. Мостовые устройства
  6. Особенности трехфазного моста и варианты его построения
  7. Сравнение однофазных и трехфазных устройств

Описание выпрямителей

Трехфазный мостовой выпрямитель

Основное отличие устройств от своих однофазных аналогов проявляется в следующем:

  • первые устанавливаются в линиях 220 Вольт и служат для получения постоянных токов незначительной величины (до 50-ти Ампер);
  • трехфазные выпрямители используются в цепях, где рабочие (выпрямленные) токи существенно превышают этот показатель и достигают нескольких сотен Ампер.
  • в сравнении с однофазными образцами эти приборы имеют более сложное устройство.

Известны схемы выпрямления трехфазного напряжения, позволяющие получить на выходе минимальный уровень пульсаций.

В электротехнике они называются «трехфазные мостовые выпрямители», так как по способу открывания диодов, управляемых полярностью напряжения, они напоминают мост через реку с односторонним движением. Только направление потока электронов в них чередуется с частотой 50 Гц, недоступной для проезда машин поочередно в каждую из сторон.

Принцип действия

Принцип работы трехфазного выпрямителя

Принцип работы любого преобразователя синусоидального напряжения основан на выпрямительных свойствах особого полупроводникового элемента – германиевого или кремниевого диода. При протекании через него переменного тока положительная полуволна свободно «проходит» через рабочий электронный переход, смещенный в прямом направлении. При воздействии отрицательной полуволны электроны встречают препятствие в виде потенциального барьера, так что ток через переход течь не может.

В простейших схемах включения используется неполный цикл обработки переменных уровней, так как вторая полуволна безвозвратно теряется. Это заметно снижает преобразуемую мощность. Для сохранения полезной составляющей были разработаны 2-хполупериодные схемы выпрямления, в которых количество диодов увеличено до двух.

«Цепь полного цикла» может содержать 4 выпрямительных элемента, но такая схема относится к категории мостовых.

Однополупериодный многофазный выпрямитель

Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.

Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:

  • эффективность (КПД) действия такого устройства очень низка;
  • полезная мощность теряется при обработке отрицательных полуволн всех трех фаз;
  • при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.

Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.

Двухполупериодный выпрямитель

Некоторые образцы силового оборудования работают только при большой величине выпрямленного тока, протекающего в нагрузке. Ее неспособны обеспечить однополупериодные выпрямители, что объясняется значительными потерями в них. Для повышения нагрузочной способности в цепях трехфазного тока все чаще применяются двухполупериодные выпрямительные приборы, содержащие по два диода на каждую из фаз.

Классическое включение в этом случае выполнено по схеме Ларионова, в честь которого названо и само выпрямительное устройство.

Анализ рабочих диаграмм такого выпрямителя наглядно свидетельствует о его бесспорных достоинствах. При работе этих схем используются как положительные, так и отрицательные полуволны, что поднимает КПД всего преобразователя. Объясняется это тем, что трехфазная структура схемы совместно с двухполупериодным выпрямлением обеспечивают шестикратное увеличение частоты пульсаций. За счет этого амплитуда сигнала на выходе после сглаживающих конденсаторов заметно возрастает (в сравнении с однополупериодным выпрямителем), а отдаваемая в нагрузку мощность повышается.

Мостовые устройства

Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.

Принцип действия трехфазного мостового выпрямителя проще всего представить так:

  • при действии на его входе переменного потенциала для каждой полуволны открытыми оказываются два диода из четырех, включенных как бы зеркально;
  • в первом случае выпрямляется положительная полуволна входного напряжения, а во втором – отрицательная;
  • в результате на выходе такой перекрестной схемы на одном полюсе моста всегда действует плюс, а на другом – минус.

Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).

Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.

Диаграммы или эпюры напряжения мостовых схем – лучшее подтверждение тому, что этот способ включения диодов в выпрямительную цепь обеспечивает максимум передачи энергии. При этом небольшие потери напряжения на переходах чаще всего удается компенсировать за счет лучшей фильтрации во вторичных цепях.

Особенности трехфазного моста и варианты его построения

Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».

Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.

В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.

Сравнение однофазных и трехфазных устройств

При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:

  • первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз);
  • выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке;
  • с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.

Понять суть работы трехфазного выпрямителя совсем несложно. Для этого потребуется ознакомиться с основами работы вентильных устройств и проанализировать электрическую схему их включения. Знание принципа действия выпрямительных приборов поможет пользователю эффективнее использовать его в повседневной работе.

Принцип действия и схема трехфазного мостового выпрямителя

Пользователям силовых цепей 380 Вольт в домашнем хозяйстве нужен пассивный (неуправляемый) трехфазный выпрямитель. Знание некоторых особенностей электронного устройства и существующих схем выпрямления окажется очень полезным. Это поможет владельцу силового оборудования эксплуатировать его более грамотно и рационально в течение длительного времени.

Описание выпрямителей

Трехфазный мостовой выпрямитель

Основное отличие устройств от своих однофазных аналогов проявляется в следующем:

  • первые устанавливаются в линиях 220 Вольт и служат для получения постоянных токов незначительной величины (до 50-ти Ампер),
  • трехфазные выпрямители используются в цепях, где рабочие (выпрямленные) токи существенно превышают этот показатель и достигают нескольких сотен Ампер.
  • в сравнении с однофазными образцами эти приборы имеют более сложное устройство.

Известны схемы выпрямления трехфазного напряжения, позволяющие получить на выходе минимальный уровень пульсаций.

В электротехнике они называются «трехфазные мостовые выпрямители», так как по способу открывания диодов, управляемых полярностью напряжения, они напоминают мост через реку с односторонним движением. Только направление потока электронов в них чередуется с частотой 50 Гц, недоступной для проезда машин поочередно в каждую из сторон.

Принцип действия

Принцип работы трехфазного выпрямителя

Принцип работы любого преобразователя синусоидального напряжения основан на выпрямительных свойствах особого полупроводникового элемента – германиевого или кремниевого диода. При протекании через него переменного тока положительная полуволна свободно «проходит» через рабочий электронный переход, смещенный в прямом направлении. При воздействии отрицательной полуволны электроны встречают препятствие в виде потенциального барьера, так что ток через переход течь не может.

В простейших схемах включения используется неполный цикл обработки переменных уровней, так как вторая полуволна безвозвратно теряется. Это заметно снижает преобразуемую мощность. Для сохранения полезной составляющей были разработаны 2-хполупериодные схемы выпрямления, в которых количество диодов увеличено до двух.

«Цепь полного цикла» может содержать 4 выпрямительных элемента, но такая схема относится к категории мостовых.

Однополупериодный многофазный выпрямитель

Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.

Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:

  • эффективность (КПД) действия такого устройства очень низка,
  • полезная мощность теряется при обработке отрицательных полуволн всех трех фаз,
  • при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.

Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.

Двухполупериодный выпрямитель

Некоторые образцы силового оборудования работают только при большой величине выпрямленного тока, протекающего в нагрузке. Ее неспособны обеспечить однополупериодные выпрямители, что объясняется значительными потерями в них. Для повышения нагрузочной способности в цепях трехфазного тока все чаще применяются двухполупериодные выпрямительные приборы, содержащие по два диода на каждую из фаз.

Классическое включение в этом случае выполнено по схеме Ларионова, в честь которого названо и само выпрямительное устройство.

Анализ рабочих диаграмм такого выпрямителя наглядно свидетельствует о его бесспорных достоинствах. При работе этих схем используются как положительные, так и отрицательные полуволны, что поднимает КПД всего преобразователя. Объясняется это тем, что трехфазная структура схемы совместно с двухполупериодным выпрямлением обеспечивают шестикратное увеличение частоты пульсаций. За счет этого амплитуда сигнала на выходе после сглаживающих конденсаторов заметно возрастает (в сравнении с однополупериодным выпрямителем), а отдаваемая в нагрузку мощность повышается.

Мостовые устройства

Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.

Принцип действия трехфазного мостового выпрямителя проще всего представить так:

  • при действии на его входе переменного потенциала для каждой полуволны открытыми оказываются два диода из четырех, включенных как бы зеркально,
  • в первом случае выпрямляется положительная полуволна входного напряжения, а во втором – отрицательная,
  • в результате на выходе такой перекрестной схемы на одном полюсе моста всегда действует плюс, а на другом – минус.

Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).

Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.

Диаграммы или эпюры напряжения мостовых схем – лучшее подтверждение тому, что этот способ включения диодов в выпрямительную цепь обеспечивает максимум передачи энергии. При этом небольшие потери напряжения на переходах чаще всего удается компенсировать за счет лучшей фильтрации во вторичных цепях.

Особенности трехфазного моста и варианты его построения

Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».

Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.

В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.

Сравнение однофазных и трехфазных устройств

При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:

  • первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз),
  • выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке,
  • с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.

Расчет трехфазного выпрямителя также будет сложнее, так как в этом случае учитываются векторные составляющие действующих токов и напряжений. Это объясняется тем, что в цепях 380 Вольт фазные параметры смещены относительно друга на 120 градусов.

Понять суть работы трехфазного выпрямителя совсем несложно. Для этого потребуется ознакомиться с основами работы вентильных устройств и проанализировать электрическую схему их включения. Знание принципа действия выпрямительных приборов поможет пользователю эффективнее использовать его в повседневной работе.

Как устроен трехфазный выпрямитель

Большая часть промышленного и профессионального оборудования, например, станки или сварочные аппараты используют трехфазное напряжение. Это значит, что они должны иметь в себе выпрямитель трехфазный. Обычно это устройство использует в себе трехфазный диодный мост. Обычно этих диодов шесть – по два на каждую фазу тока. Они могут обладать различными техническими характеристиками, в зависимости от мощности самого прибора, потребляемого тока и силы тока, необходимой для работы.

В статье будет рассказано о структуре трехфазного преобразователя, как он работает, на каком принципе основывается его функционирование и каких видов они бывают. В качестве дополнения, в статье приведены несколько видеороликов и одну скачиваемую статье в формате PDF.

Принцип работы и схемы

Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные. Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра. Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:

В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора. Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:

Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже. Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:

Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.

Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов. Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа. Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды – в процессе участвуют одновременно два диода — по одному из каждой группы.

Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.

Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы). Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими.

Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки. Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения.

Мостовой тип устройства

Трехфазная мостовая схема выпрямления использует шесть диодов (или тиристоров, если требуется управление). Выходное напряжение характеризуется тремя значениями: минимальным U, средним U и пиковым напряжением. Полноволновой трехфазный выпрямитель похож на мост Гейца. Схема полноволнового трехфазного устройства. Обычный трехфазный выпрямитель не использует нейтраль. Для сети 230 В / 400 В между двумя входами выпрямителя. Действительно, между 2 входами всегда есть составное напряжение U (= 400 В). Неконтролируемое устройство означает, что нельзя отрегулировать среднее выходное U для этого входного U. Неконтролируемое выпрямление использует диоды.

Управляемый выпрямитель позволяет регулировать среднее выходное напряжение, воздействуя на задержки срабатывания тиристора (используется вместо диодов). Эта команда требует сложной электронной схемы.

Диод ведёт себя как тиристор, загружаемый без задержки. Выходное U трехфазного выходного напряжения. Всего 7 кривых: 6 синусоид и красная кривая, соединяющая верхнюю часть синусоид («синусоидальные шапки»). 6 синусоидов представляют собой 3 напряжения, составляющие U между фазами и 3 одинаковыми напряжениями, но с противоположным знаком:

U31 = -U13U23 = -U32U21 = -U12.

Красная кривая представляет U на выходе выпрямителя, то есть на клеммах резистивной нагрузки. Это U не относится к нейтрали. Она плавает. Это U колеблется между 1,5 В max и 1,732 Вmax (корень из 3). Umax — пиковое значение одного напряжения и составляет 230×1,414 = 325 В.

Свойства трехфазного напряжения

Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца. Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.

Среднее значение трехфазного выпрямленного напряжения: avg = 1,654Vmax = 1,654 x (1,414×230) = 538 В. Выходное напряжение трехфазного выходного выпрямителя (зум). 3-фазный полноволновый выпрямитель MDS 130A 400V. 5 терминалов: 3 фазы, + и -. Этот выпрямитель содержит 6 диодов. Таким образом, можно суммировать следующие моменты:

  • 6 диодов, 2 диода на фазу — слабая пульсация по сравнению с одноволновым выпрямителем (мост Гейца);
  • среднее значение выпрямленного напряжения: 538 В для сети 230 В / 400 В;
  • нейтраль не используется трехфазным выпрямителем.

Работа диодного моста

Он состоит из четырёх диодов, и эта конфигурация подключается через нагрузку. Во время положительного полупериода входных сигналов диодов D1 и D2 в прямом направлении смещены, а D3 и D4 обращены назад. Когда напряжение, превышающее пороговый уровень диодов D1 и D2, начинает проводиться — ток начинает протекать через него, как показано на рисунке ниже на красной линии. Во время отрицательного полупериода входного сигнала AC диоды D3 и D4 смещены вперёд, а D1 и D2 обращены в обратном направлении. Ток нагрузки начинает протекать через диоды D3 и D4, когда эти диоды начинают проводить, как показано на рисунке.

В обоих случаях направление тока нагрузки одинаковое, как показано на рисунке одностороннее, что означает DC. Таким образом, при использовании мостового выпрямителя входной ток AC преобразуется в DC. Выход на нагрузке с помощью этого мостового выпрямителя имеет пульсирующий характер, но для получения чистого DC требуется дополнительный фильтр, такой как конденсатор. Такая же операция применима для различных мостовых выпрямителей, но в случае управляемых выпрямителей запускается тиристор, чтобы управлять током для нагрузки.

Режим 1 (от α до π). В положительном полупериоде подаваемого переменного сигнала SC1 T1 и T2 являются прямым смещением и могут быть включены под углом α. Напряжение нагрузки равно положительному мгновенному напряжению питания AC.

Режим 2 (π toπ + α). При wt = π входное питание равно нулю, а после π оно становится отрицательным. Но индуктивность противодействует любым изменениям для поддержания DC нагрузки и в том же направлении.

Действие схемы

Действие схемы 3-фазного полностью контролируемого мостового выпрямителя описывается в этой странице. Трехфазный полностью контролируемый мостовой выпрямитель может быть сконструирован, используя шесть тиристоров. Можно видеть, что напряжение фазы А является наивысшим из трех фазных напряжений, когда Θ находится между 30° и 150°.

Также можно видеть, что напряжение фазы В является наивысшим трехфазных напряжений, когда Θ находится в между 150 и 270° и что напряжение фазы С является наивысшим из фазных напряжений, когда Θ находится между 270 и 390° или 30° в следующем цикле.

Если используются диоды, диод d1 вместо s1 проводил бы напряжение от 30 до 150°, диод d3 проводил бы от 150 до 270° и диод d5 – от 270 до 390° или 30° в следующем цикле. Таким же образом, диод d4 проводил бы от 210 до 30°, диод d6 – от 330 до 450° или 90° в следующем цикле, и диод d2 проводил бы от 90 до 210°. Положительный рельс выходного напряжения моста соединяется с наивысшими сегментами конверта трехфазных напряжений и отрицательного рельса выведенного напряжения к самым низким сегментам конверта.

На любой момент кроме переходных периодов, когда электрический ток перемещен от одного диода к другому, только одна из следующих пар работает в каждый момент.

Промежуток Θ Работающий диод
30 до 90 D1 и D6
90 до 150 D1 и D2
150 до 210 D2 и D3
210 до 270 D3 и D4
270 до 330 D4 и D5
330 до 360 и 0 до 30 D5 и D6

Если используются тиристоры, их включение может быть задержано выбором нужного угла открытия. Когда тиристоры открываются при угле 0, выход из мостового выпрямителя такой же, как из схемы с диодами. Например, видно, что d1 начинает проводить только после Θ = 30°. Действительно, он может начать проводить только после Θ = 30°, так, как он реверсивно направлен до Θ = 30°. Смещение через d1 становится равным 0, когда Θ = 30° и диод d1 начинает становиться прямонаправленным только после Θ = 30°.

Когда Va(Θ)= E*sin (Θ), диод d1 обратно направлен перед Θ = 30° и прямонаправлен когда Θ = 30°. При нулевом угле открытия тиристоров s1 открывается, когда Θ = 30°. Это означает, что если синхронизирующий сигнал нужен для открытия s1, то сигнальное напряжение Va(Θ) отстает на 30° и если угол открытия Θ, тиристор s1 запущен, когда Θ = α + 30°. Предоставляют, что проводимость непрерывна, следующая таблица представляет пару тиристоров в проводимости в любой момент.

Промежуток Θ Работающий диод
α + 30 до α + 90 S1 и S6
α + 90 до α + 150 S1 и S2
α + 150 до α + 210 S2 и S3
α + 210 до α + 270 S3 и S4
α + 270 до α + 330 S4 и S5
α + 330 до α + 360 и α + 0 до α + 30 S5 и S6

Затем с изменением мгновенного угла проводящая пара соединяется с толстыми оранжевыми дугами. (на рисунке) Один способ представить себе – вообразить две щетки, которые являются 120° шириной и устройство в фазе соединенное с поведением щеток.

Щетка, которая имеет “угол открытия” написано рядом она действует как щетка соединенная с положительным рельсом и другая действует как будто бы она соединена с отрицательным рельсом. Эта диаграмма иллюстрирует, как схема выпрямителя действует как коммутатор и преобразует переменный ток в постоянный. Выходное напряжение определяется амплитудой фазового напряжения, являясь единым значением.

ТРЕХФАЗНЫЙ МОСТОВОЙ ВЫПРЯМИТЕЛЬ

Схема трехфазного мостового выпрямителя (рис. 12.8) нашла широкое применение в выпрямительных устройствах большой и средней мощности. В схеме диоды VD<, VD3, VDS (нечетная группа) соединяются между собой со стороны катода. Диоды VD2, VD4, VD6

Рис. 12.8. Схема трехфазного мостового выпрямителя

(четная группа) соединяются между собой со стороны анодов, а их катоды — с анодами диодов нечетной группы. При этом аноды присоединяют к концам фаз вторичных обмоток трансформатора TV.

Между общей точкой катодов и общей точкой анодов подключают нагрузочное сопротивление RH. По отношению к внешней цепи общая точка катодов является положительным полюсом, а общая точка анодов — отрицательным полюсом. Работа нечетной группы диодов соответствует работе трехфазной схемы с нулевым проводом. В этой группе в течение ‘/з периода работает диод с наиболее высоким потенциалом анода. В четной группе диодов, потенциалы анодов которой всегда одинаковы, в данную часть периода работает тот диод, катод которого имеет более отрицательный потенциал. В мостовой схеме в любой момент времени работают всегда два диода: один из четной, другой из нечетной группы.

На рис. 12.9 представлены временные диаграммы напряжений и токов трехфазного мостового выпрямителя, на основе которых можно проанализировать работу схемы. На рис. 12.9, а показаны фазные напряжения вторичной обмотки трансформатора и, и, и, сдвинутые по фазе относительно друг друга на угол 2л;/3.

Моменты времени, соответствующие пересечению положительных полуволн фазных напряжений, являются моментами начала открытия одного из диодов нечетной группы VDX, VD3, VD5. Моменты времени, соответствующие пересечению отрицательных полуволн фазных напряжений, являются моментами начала открытия одного из диодов четной группы VD2, VDA, VDb (рис. 12.9, б). Поэтому выпрямленное напряжение в этой схеме ограничивается

Рис. 12.9. Временные диаграммы токов и напряжений трехфазного мостового выпрямителя

кривой линейного напряжения вторичной обмотки трансформатора U2jl. При этом пульсации кривой выпрямленного напряжения соответствуют шестикратной частоте по отношению к частоте питающего напряжения. С учетом того что в фазах вторичной обмотки трансформатора в течение периода токи протекают в обоих направлениях, коэффициент пульсации выпрямленного тока [см. (12.12)] равен

где т — кратность частоты пульсации выпрямленного напряжения к частоте сети.

Среднее значение выпрямленного напряжения на нагрузке в соответствии с рис. 12.9, б определяет выражение

где — амплитуда линейного напряжения вторичной обмотки трансформатора.

Подставляя в (12.20) U2a = л/ЗU2, находим действующее значение вторичного напряжения:

Фазный ток вторичной обмотки трансформатора определяется токами как четного, так и нечетного диодов, присоединенных к данной фазе. Эти токи смещены по фазе относительно друг друга на угол д и противоположно направлены в соответствующей обмотке трансформатора. Поэтому ток /2 вторичной обмотки трансформатора является чисто переменным, так как не содержит постоянной составляющей (рис. 12.9, в). Действующее значение этого тока без учета его пульсаций определяют по формуле

Максимальное значение выпрямленного напряжения UH max равно амплитудному значению линейного напряжения вторичной обмотки трансформатора, так как нагрузочное сопротивление в рассматриваемой схеме включено под линейное напряжение. Связь между максимальным и средним значениями выпрямленного напряжения определяет уравнение

Максимальное значение тока диода, равное максимальному значению выпрямленного тока, с учетом (12.22) определяют из выражения

В рассматриваемой схеме среднее значение выпрямленного тока /н складывается из средних значений токов в цепях нечетных диодов, поэтому среднее значение тока диода (вентиля) /в = IJ3.

Неработающий диод нечетной группы в рассматриваемой выпрямительной схеме присоединен со стороны анода к одной из фаз трансформатора, а катод диода через другой работающий диод четной группы присоединен к другой фазе вторичной обмотки трансформатора. Тогда обратное максимальное напряжение на диоде (вентиле) t/Bmax в этой схеме равно максимальному линейному напряжению вторичных обмоток трансформатора:

Сравнительно небольшое амплитудное значение обратного напряжения (12.23), а также малый коэффициент пульсаций (12.19) являются существенным преимуществом трехфазного мостового выпрямителя.