Делитель напряжения на переменном резисторе

Делитель напряжения - это цепь состоящая из двух или нескольких сопротивлений. На каждом сопротивлении падает напряжение. Сумма напряжений равняется...

Делитель напряжения на переменном резисторе

Делитель напряжения

Делитель напряжения – это это цепь, состоящая из двух и более пассивных радиоэлементов, которые соединены последовательно.

Делитель напряжения на резисторах

Давайте разберем самый простой делитель напряжения, состоящий из двух резисторов. Эти два резистора соединим последовательно и подадим на них напряжение. Напряжение может быть как постоянное, так и переменное.

Подавая напряжение на эту цепь, состоящую из двух резисторов, у нас получается, что цепь становится замкнутой, и в цепи начинает течь электрический ток с какой-то определенной силой тока, которая зависит от номиналов резисторов.

Итак, мы знаем, что при последовательном соединении сила тока в цепи одинакова. То есть какая сила тока протекает через резистор R1, такая же сила тока течет и через резистор R2. Как же вычислить эту силу тока? Оказывается, достаточно просто, используя закон Ома: I=U/R.

Так как наши резисторы соединены последовательно, то и их общее сопротивление будет выражаться формулой

То есть в нашем случае мы можем записать, что

Как найти напряжение, которое падает на резисторе R2?

Так как ток для обоих резисторов общий, то согласно закону Ома

Подставляем вместо I формулу

и получаем в итоге

Для другого резистора ситуация аналогичная. На нем падает напряжение

Для него формула запишется

Давайте докажем, что сумма падений напряжений на резисторах равняется напряжению питания, то есть нам надо доказать, что U=UR1 +UR2 . Подставляем значения и смотрим.

что и требовалось доказать.

Эта формула также работает и для большого количества резисторов.

На схеме выше мы видим резисторы, которые соединены последовательно. Чему будет равняться Uобщ ? Так как резисторы соединены последовательно, следовательно, на каждом резисторе падает какое-то напряжение. Сумма падений напряжения на всех резисторах будет равняться Uобщ . В нашем случае формула запишется как

Как работает делитель напряжения на практике

Итак у нас имеются вот такие два резистора и наш любимый мультиметр:

Замеряем сопротивление маленького резистора, R1=109,7 Ом.

Замеряем сопротивление большого резистора R2=52,8 Ом.

Выставляем на блоке питания ровно 10 Вольт. Замер напряжения производим с помощью мультиметра.

Цепляемся блоком питания за эти два резистора, запаянные последовательно. Напомню, что на блоке ровно 10 Вольт. Показания амперметра на блоке питания тоже немного неточны. Силу тока мы будем замерять в дальнейшем также с помощью мультиметра.

Замеряем падение напряжения на большом резисторе, который обладает номиналом в 52,8 Ом. Мультиметр намерял 3,21 Вольта.

Замеряем напряжение на маленьком резисторе номиналом в 109,7 Ом. На нем падает напряжение 6,77 Вольт.

Ну что, с математикой, думаю, у всех в порядке. Складываем эти два значения напряжения. 3,21+6,77 = 9,98 Вольт. А куда делись еще 0,02 Вольта? Спишем на погрешность щупов и средств измерений. Вот наглядный пример того, что мы смогли разделить напряжение на два разных напряжения. Мы еще раз убедились, что сумма падений напряжений на каждом резистора равняется напряжению питания, которое подается на эту цепь.

Сила тока в цепи при последовательном соединении резисторов

Давайте убедимся, что сила тока при последовательном соединении резисторов везде одинакова. Как измерить силу тока постоянного напряжения, я писал здесь. Как видим, мультиметр показал значение 0,04 А или 40 мА в начале цепи, в середине цепи и даже в конце цепи. Где бы мы не обрывали нашу цепь, везде одно и то же значение силы тока.

Переменный резистор в роли делителя напряжения

Для того, чтобы плавно регулировать выходное напряжение, у нас есть переменный резистор в роли делителя напряжения. Его еще также называют потенциометром.

Его обозначение на схеме выглядит вот так:

Принцип работы такой: между двумя крайними контактами постоянное сопротивление. Сопротивление относительно среднего контакта по отношению к крайним может меняться в зависимости от того, куда мы будем крутить крутилку этого переменного резистора. Этот резистор рассчитан на мощность 1Вт и имеет полное сопротивление 330 Ом. Давайте посмотрим, как он будет делить напряжение.

Так как мощность небольшая, всего 1 Вт, то мы не будем нагружать его большим напряжением. Мощность, выделяемая на каком-либо резисторе рассчитывается по формуле P=I 2 R. Значит, этот переменный резистор может делить только маленькое напряжение при маленьком сопротивлении нагрузки и наоборот. Главное, чтобы значение мощности этого резистора не вышло за грани. Поэтому я буду делить напряжение в 1 Вольт.

Для этого выставляем на блоке напряжение в 1 Вольт и цепляемся к нашему резистору по двум крайним контактам.

Крутим крутилку в каком-нибудь произвольном направлении и останавливаем ее. Замеряем напряжение между левым и средним контактом и получаем 0,34 Вольта.

Замеряем напряжение между средним и правым контактом и получаем 0,64 Вольта

Суммируем напряжение и получаем 0,34+0,64=0,98 Вольт. 0,02 Вольта опять где-то затерялись. Скорее всего на щупах, так как они тоже обладают сопротивлением. Как вы видите, простой переменный резистор мы можем использовать в роли простейшего делителя напряжения.

Похожие статьи по теме “делитель напряжения”

Делитель напряжения. Расчет делителя напряжения.

Делитель напряжения, одна из широко используемых схем соединения резисторов. Делитель напряжения позволяет уменьшить выходное напряжение. Например, на вход делителя подается 12 Вольт, а на выходе 3 Вольта, или сколько нужно, но не больше входного напряжения делителя. Схема соединения резисторов, о которой мы говорим, может использоваться только для слаботочной нагрузки, чуть позже я объясню почему. Вот собственно и сама схема делителя:

Делитель напряжения вы все ни один раз видели, например, регулятор громкости. Регулятором громкости является переменный резистор, соединенный по схеме потенциометра.

Потенциометр, можно представить как два резистора, соединённых последовательно, при вращении рукоятки один резистор уменьшает свое сопротивление, другой увеличивает.

В делителе напряжения, входное напряжение полностью падает на двух резисторах. Например, входное напряжение 40 Вольт и если на одном резисторе падает 3 Вольта, то на другом 37 Вольт.

Расчет делителя напряжения.

Сразу скажу одно правило, ток, протекающий через резистор R1 и R2 должен быть как минимум в 10 раз больше, чем ток нагрузки (иначе будет просадка напряжения на выходе). Например, если к нашему девайсу будет подсоединена лампа, потребляющая ток 40 мА, то делитель нужно рассчитывать так, чтобы ток, текущий через резисторы R1 и R2 был минимум 400 мА (в 10 и более раз больше).

И еще один нюанс. Ток делителя не только должен быть больше тока нагрузки в 10 раз, но и должен быть меньше тока, выдаваемого источником тока. Вот пример, мы посадили на выход делителя напряжения лампу, потребляющую 200 мА, соответственно ток через делитель потечет как минимум в 10 раз больше (2 Ампер), но если источник тока у нас рассчитан выдавать 1 Ампер, то он просто напросто не вытянет и сгорит, либо сработает защита.

Поэтому есть правило. При расчете делитель напряжения нужно рассчитывать так, чтобы ток через него был как минимум в 10 раз больше тока нагрузки и меньше максимального тока источника. Отсюда делитель напряжения используют для слаботочных нагрузок.

Входной ток (ток делителя) ищется по такой формуле:

Например, у меня входное напряжение 12 Вольт (10 Ампер), мне нужен делитель напряжения, у которого на выходе нагрузка напряжением 3 Вольта и током потребления 20 мА (зацеплю светодиод).

Ток делителя Iвх должен быть минимум в 10 раз больше тока нагрузки, возьму в 20 раз. Получается Iвх = 20 мА*20=400мА.

Найдем теперь сумму резисторов R1 и R2 (Rобщ) зная ток, текущий через них 0,4 Ампер и напряжение на них 12 Вольт. Rобщ=12 Вольт/0,4 Ампер = 30 Ом.

Далее нахожу номинал резистора R2 по следующей формуле:

R2 = (3 Вольта*30 Ом)/12 Вольт = 7,5 Ом.

Теперь нахожуу R1, R1 = Rобщ – R2 = 30 – 7,5 = 22,5 Ом.

Давайте проверим по этой формуле:

Iвх = 3 Вольт / 7,5 Ом = 0,4 Ампер.

Iвх = 12 Вольт / 30 Ом = 0,4 Ампер.

Рассчитаем мощность резисторов. Напряжение на R2 = 3 Вольт, значит напряжение на R1 = Uвх-Uвых = 9 Вольт (я уже говорил, если на одном падает 3 Вольта, то на втором резисторе делителя падает остальное напряжение).

Мощность ищется по следующей формуле:

P1 = 9 Вольт* 0,4 Ампер = 3,6 Вт (из стандартного ряда 5 Вт);

P2 = 3 Вольт* 0,4 Ампер = 1,2 Вт (из стандартного ряда 2 Вт);

Вот еще несколько формул, вы их можете использовать для расчета делителя напряжение в зависимости от того, какими известными значениями вы владеете.

  • Проверка расчета практически.

При расчете мы получили следующие номиналы резисторов, R1 = 22,5 Ом (из стандартного рядя 22 Ом), R2 = 7,5 Ом.

По мощности у меня оба резистора 2 Вт, поэтому R1 у меня сильно греется.

Входное напряжение делителя 12 Вольт.

Напряжение, которое падает на R1 = 22 Ом почти 9 Вольт.

Напряжение, которое падает на R2 = 7,5 Ом (наше выходное напряжение делителя) = 3 Вольта.

Ток, текущий через R1 и R2 (входной ток делителя) = 430 мА.

Светодиод загорается и горит в нормальном режиме, не перегорая.

Если пренебрегать погрешностями резисторов и прибора, то расчет верен.

Делитель напряжения на резисторах, конденсаторах и индуктивностях

С целью получения фиксированного значения напряжения, равного доле от исходного значения, в электрических цепях применяют делители напряжения. Делители напряжения могут состоять из двух или более элементов, которыми могут служить резисторы либо реактивные сопротивления (конденсаторы или катушки индуктивности).

Делитель напряжения — комбинация из сопротивлений, служащая для того, чтобы разделить подводимое напряжение на части.

В простейшем виде делитель напряжения представляется парой участков электрической цепи, соединенных последовательно друг с другом, которые и называются плечами делителя. Верхним плечом называется тот участок, который расположен между точкой положительного напряжения и выбранной точкой соединения участков, а нижним плечом — участок между точкой соединения (выбранной точкой, нулевой точкой) и общим проводом.

Делители напряжения на резисторах

Конечно, делители напряжения могут применяться как в цепях постоянного тока, так и в цепях тока переменного. Делители на резисторах подходят и для тех, и для других цепей, однако используются они только в цепях низкого напряжения. Для питания устройств делители напряжения на резисторах не применяют.

В простейшем виде резистивный делитель напряжения состоит всего из пары резисторов, соединенных последовательно. Делимое напряжение подается на делитель, в результате на каждом резисторе падает определенная доля этого напряжения, пропорциональная номиналу резистора. Сумма падений напряжений равна здесь напряжению подаваемому на делитель.

Согласно закону Ома для участка электрической цепи, на каждом резисторе падение напряжения будет прямо пропорционально току и величине сопротивления резистора. А согласно первому правилу Кирхгофа, ток через данную цепь будет везде один и тот же. Так, на каждый резистор придутся падения напряжения:

И напряжение на концах участка цепи будет равно:

А ток в цепи делителя составит:

Теперь если подставить выражение для тока в формулы для падений напряжений на резисторах, то получим формулы для нахождения величин напряжений на каждом из резисторов делителя:

Подбирая величины сопротивлений R1 и R2 можно выделить любую часть всего подводимого напряжения. В том случае, когда напряжение нужно разделить на несколько частей, последовательно с источником напряжения включается несколько сопротивлений.

Используя делитель напряжения на резисторах для тех или иных целей, важно понимать, что присоединенная к одному из плеч делителя нагрузка, будь то измерительный прибор или что-нибудь другое, должна иметь собственное сопротивление значительно большее, чем общее сопротивление резисторов, образующих делитель. В противном случае сопротивление нагрузки само должно учитываться в расчетах, будучи рассмотрено как параллельный плечу резистор, входящий в состав делителя.

Пример: есть источник постоянного напряжения 5 вольт, необходимо подобрать к нему резисторы для делителя напряжения, чтобы снимать с делителя измерительный сигнал величиной в 2 вольта. Допустимая рассеиваемая на делителе мощность не должна превышать 0,02 Вт.

Решение: Пусть максимальная мощность, рассеиваемая на делителе, равна 0,02 Вт, тогда минимальное общее сопротивление делителя при 5 вольтах найдем из закона Ома, оно получится равно 1250 Ом. Пусть 1,47 кОм — выбранное нами общее сопротивление делителя, тогда 2 вольта упадет на 588 омах. Выберем постоянный резистор на 470 Ом и переменный на 1 кОм. Установим на переменном резисторе значение в 588 Ом.

Делители напряжения на резисторах широко применяются сегодня в электронных схемах. На этих схемах значения величин резисторов для делителей выбираются исходя из параметров активных элементов схем. Как правило, делители стоят в измерительных цепях схем, в цепях обратной связи преобразователей напряжения и т. д. Минус таких решений заключается в том, что резисторы рассеивают на себе мощность в виде тепла, однако целесообразность оправдывает эти малые потери энергии.

Делители напряжения на конденсаторах

В цепях переменного тока, в высоковольтных схемах, применяют делители напряжения на конденсаторах. Здесь используется реактивный характер сопротивления конденсаторов в цепях переменного тока. Величина реактивного сопротивления конденсатора в цепи переменного тока зависит от электроемкости конденсатора и от частоты напряжения. Вот формула для нахождения этого сопротивления:

Формула свидетельствует о том, что чем больше электроемкость конденсатора — тем его реактивное (емкостное) сопротивление меньше и чем выше частота — тем так же меньше реактивное сопротивление. Такие делители используются в измерительных схемах цепей переменного тока, падения напряжений на плечах считается аналогично случаю с постоянными активными сопротивлениями (резисторами, см. выше).

Достоинство конденсаторов, применяемых в делителях, состоит в том, что рассеивание энергии в форме тепла получается минимальным, и зависит только от качества диэлектрика.

Делитель напряжения на индуктивностях

Индуктивный делитель напряжения — еще один вид делителей, применяемых в измерительной электронике переменного тока, особенно в низковольтных схемах, работающих на высоких частотах. Сопротивление катушек для переменного тока высокой частоты носит преимущественно реактивный (индуктивный) характер, оно находится по формуле:

Формула свидетельствует о том, что чем больше индуктивность и чем выше частота — тем выше сопротивление катушки переменному току. Здесь важно понимать, что провод катушки имеет активное сопротивление, поэтому мощность, рассеиваемая в виде тепла, свойственная делителю на индуктивностях, значительно выше, чем у делителей на конденсаторах.

В любительской электронике делители напряжения часто используются при подключении аналоговых датчиков к модулям Ардуино.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Делитель напряжения: схема и расчёт

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

Таким образом, сила тока протекающая через резисторы

Теперь, когда нам известен ток в R2, расчитаем напряжение вокруг него:

Или если отавить формулу в общем виде:

Так с помощью пары резисторов мы изменили значение входного напряжения с 9 до 5 В. Это простой способ получить несколько различных напряжений в одной схеме, оставив при этом только один источник питания.

Применение делителя для считывания показаний датчика

Другое применение делителя напряжения — это снятие показаний с датчиков. Существует множество компонентов, которые меняют своё сопротивление в зависимости от внешних условий. Так термисторы меняют сопротивление от нуля до определённого значения в зависимости от температуры, фоторезисторы меняют сопротивление в зависимости от интенсивности попадающего на них света и т.д.

Если в приведённой выше схеме заменить R1 или R2 на один из таких компонентов, Vout будет меняться в зависимости от внешних условий, влияющих на датчик. Подключив это выходное напряжение к аналоговому входу Ардуино, можно получать информацию о температуре, уровне освещённости и других параметрах среды.

Значение выходного напряжения при определённых параметрах среды можно расчитать, сопоставив документацию на переменный компонент и общую формулу расчёта Vout.

Подключение нагрузки

С делителем напряжения не всё так просто, когда к выходному подключения подключается какой-либо потребитель тока, который ещё называют нагрузкой (load):

В этом случае Vout уже не может быть расчитано лишь на основе значений Vin, R1 и R2: сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление

В случае с подключеной нагрузкой следует рассматривать нижнюю часть делителя, как два резистора соединённых параллельно:

Подставив значение в общую формулу расчёта Vout, получим:

Как видно, мы потеряли более полутора вольт напряжения из-за подключения нагрузки. И тем ощутимее будут потери, чем больше номинал R2 по отношению к сопротивлению L. Чтобы нивелировать этот эффект мы могли бы использовать в качестве R1 и R2 резисторы, например, в 10 раз меньших номиналов.

Пропорция сохраняется, Vout не меняется:

А потери уменьшатся:

Однако, у снижения сопротивления делящих резисторов есть обратная сторона медали. Большое количество энергии от источника питания будет уходить в землю. В том числе при отсоединённой нагрузке. Это небольшая проблема, если устройство питается от сети, но — нерациональное расточительство в случае питания от батарейки.

Кроме того, нужно помнить, что резисторы расчитаны на определённую предельную мощьность. В нашем случае нагрузка на R1 равна:

А это в 4-8 раз выше максимальной мощности самых распространённых резисторов! Попытка воспользоваться описанной схемой со сниженными номиналами и стандартными 0.25 или 0.5 Вт резисторами ничем хорошим не закончится. Очень вероятно, что результатом будет возгарание.

Применимость

Делитель напряжения подходит для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора.

Делитель не подходит для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, Vout также будет неравномерным.

Делитель напряжения на резисторах

В электронике существует множество схем, требующих регулировки и оптимизации напряжения на различных участках. Для решения этой задачи чаще всего используется делитель напряжения на резисторах, зарекомендовавший себя наиболее эффективным устройством. Данные приборы используются в самых разных конструкциях, начиная от простейших настенных светильников, и заканчивая сложными схемами в платах управления.

  1. Как работает делитель напряжения
  2. Расчет резистивного делителя напряжения
  3. Применение резисторных делителей напряжения
  4. Расчет делителя напряжения на резисторах онлайн при помощи калькулятора

Как работает делитель напряжения

Делитель напряжения это устройство, осуществляющее регулировку выходного напряжения по отношению значения входного напряжения, в соответствии с коэффициентом передачи. То есть, из большего значения получается меньшее, а само напряжение бывает постоянным или переменным. Самая простая схема делителя напряжения состоит как минимум из двух сопротивлений. Если их сопротивления равны между собой, то и падения напряжения будут одинаковыми. Поэтому, по закону Ома напряжение на выходе прибора будет ровно в два раза ниже, чем на входе. В других случаях для расчетов падения напряжений используются формулы.

Основной функцией делителя напряжения в электрических цепях является снижение напряжения и получение нескольких его значений с фиксированными показателями на различных участках. Его основой служат резисторы или реактивные сопротивления в количестве два и более элементов.

Простейший делитель представляется в виде двух участков цепи, называемых плечами. Верхним плечом считается участок между нулевой точкой и положительным напряжением, а нижним – участок между нулевой точкой и минусом. После того как определены исходные данные, можно сделать самый простой расчет делителя напряжения.

В качестве примера рассматриваются два резистора, соединенные последовательно. К ним подается напряжение U, которое может быть переменными или постоянным. После этого в действие вступает закон Ома, когда при последовательном соединении резисторов, общее сопротивление составит сумму их номиналов. В виде формы это будет выглядеть следующим образом: I = U/Rобщ, в которой Rобщ = R1+R2. Следовательно, I = U/(R1+R2).

Сила тока при последовательно соединенных резисторов, будет одинаковой на всех участках цепи. Если у каждого резистора имеется собственное значение сопротивления, то по закону Ома у них образуются совершенно разные напряжения. Сопротивлению R1 соответствует напряжение U1, а сопротивлению R2 – напряжение U2. В результате получается следующая ситуация, выраженная формулой I = U2/R2 = U1/R1 = U/(R1+R2).

Для того, чтобы найти значения напряжений U1 и U2, необходимо выполнить такие действия: U1 = U x R1/(R1+R2) и U2 = U x R2/(R1+R2). Если правые части каждого уравнения сложить друг с другом, то в результате получится значение входящего напряжения U, состоящее из суммы напряжений U1 и U2, то есть U = U1 + U2. Это значит, что сумма падений напряжений на всех последовательно соединенных резисторах, будет равна напряжению источника питания, то есть входящему напряжению. Таким образом, данное выражение есть ни что иное, как формула делителя напряжения. Практически получается, что входящее напряжение U оказалось разделенным на два напряжения с собственными значениями – U1 и U2.

Во многих случаях необходимо, чтобы процесс разделения напряжения осуществлялся плавно. С этой целью был изобретен прибор – переменный резистор. Работа устройства происходит по установленной схеме. Два крайних контакта обладают постоянным сопротивлением, а сопротивление среднего контакта относительно крайних контактов будет изменяться в зависимости от направления вращения регулятора. С помощью переменных резисторов добавляется громкость в звуковых колонках, у радиоприемников и телевизоров старых марок.

Расчет резистивного делителя напряжения

Сделать расчеты делителя, состоящего из более чем трех резисторов можно по специальным формулам. Существуют методики, позволяющие выводить формулы для схем, содержащих от четырех и более резисторов. В примерных расчетах будет использоваться источник питания с напряжением 12 вольт. Необходимо получить разные значение напряжения: U1 = 1В, U2 = 3В, U3 = 5В, U1 = 7В.

На представленном рисунке номера резисторов, расположенных в определенном порядке, соответствуют создаваемым падениям напряжения. Для того чтобы получить требуемые значения напряжения понадобится пять резисторов. Их сопротивления и нужно будет определить.

Прежде чем рассчитать делитель напряжения на резисторах, необходимо задать его общее сопротивление. Его значение будет находиться в промежутке между 1 кОм и 100 кОм. Могут быть заданы и другие параметры, однако следует учитывать, что при малых значениях сопротивления, на делителе произойдет рост тепловых потерь, а при слишком больших – значения полученного напряжения будут неточными из-за подключенной нагрузки. Поэтому при расчетах рекомендуется использовать значение в пределах 12 кОм.

Итогом будут следующие формулы для каждого резистора:

  • R1 = U1Rдел/Uпит;
  • R2 = U2Rдел/Uпит – R1;
  • RЗ = U3Rдел/Uпит-(R1+R2);
  • R4 = U4Rдел/Uпит – (R1+R2+RЗ).

Остается лишь определить сопротивление дополнительного, пятого резистора:

Если в указанные формулы подставить исходные данные, то сопротивления резисторов будут иметь следующие значения: R1 = 1 кОм, R2 = 2 кОм, R3 = 2 кОм, R4 = 2 кОм, Rдоп = 5 кОм. Полученные значения резисторов №№ 1,2,3,4 совпадают с номиналами, расположенными в ряду Е24. Для дополнительного резистора в этом ряду нет точного номинала, поэтому ему подойдет сопротивление, максимально приближенное к расчетному – 5,1 кОм.

С целью получения более реальных значений напряжений, соответствующие заданным значениям, каждый резистор, используемый в делителе, необходимо заранее проверить омметром. В этом случае точные данные позволят получить результаты, в которых отклонение от номинала составит не более 1%. Данные формулы могут использоваться при расчетах делителей, включающих в схему любое количество резисторов.

Применение резисторных делителей напряжения

Каждый резисторный делитель получил широкое практическое применение в различных электронных схемах. Типичным примером является потенциометр, который является переменным резистором, входящим в состав регулируемого делителя напряжения. Он состоит из резистора и скользящего контакта, разделяющего этот резистор на две части и передвигающегося между ними.

Другим вариантом, где применяется резистивный делитель напряжения, являются резистивные датчики, устанавливаемые в различные устройства. Типичным примером служит фоторезистор, изменяющий сопротивление, пропорционально количеству света, падающему на него. Кроме того, эти элементы используются и в других приборах – датчиках давления, ускорения, термисторах и других аналогичных устройствах.

Расчет делителя напряжения на резисторах онлайн при помощи калькулятора

Расчет делителя напряжения

Напряжение при последовательном и параллельном соединении резисторов

Параметрический стабилизатор напряжения

Индикатор напряжения на светодиодах: схема, как сделать своими руками самодельный указатель напряжения в сети