Два стабилизатора напряжения параллельно

Не раз и не два мне попадались предложения типа «давайте включим два стабилизатора напряжения параллельно, если не хватает выходного тока одного». В том числе и здесь: Тут — в авторском тексте о...
Содержание
  1. Два стабилизатора напряжения параллельно
  2. «Нельзя просто так взять и запараллелить источники напряжения»
  3. О параллельном соединении источников напряжения с точки зрения закона Ома, правил Кирхгофа и примкнувших к ним ТОЭ.
  4. О параллельном соединении стабилизаторов напряжения с точки зрения наличия в них обратной связи.
  5. О параллельном соединении стабилизаторов напряжения в симуляторе.
  6. Вывод.
  7. Стабилизаторы напряжения: схемы, параметры, диаграммы
  8. Технические характеристики стабилизатора LM338:
  9. Принципы расчета характеристик
  10. Примеры применения стабилизатора LM338 (схемы включения)
  11. Простой регулируемый блок питания на LM338
  12. Простой 5 амперный регулируемый блок питания
  13. Регулируемый блок питания на 15 ампер
  14. Источник питания с цифровым управлением
  15. Схема контроллера освещения
  16. Зарядное устройство 12В на LM338
  17. Схема плавного включения (мягкий старт) блока питания
  18. Принцип работы стабилизаторов
  19. Принцип действия релейных моделей
  20. Как работают сервоприводные приборы
  21. Принцип работы инверторных устройств
  22. Подключение однофазных потребителей
  23. Два стабилизатора напряжения параллельно
  24. Схема подключения двух стабилизаторов в помещении
  25. Схема подключения двух стабилизаторов в помещении
  26. Схема подключения двух стабилизаторов в помещении
  27. Схема подключения двух стабилизаторов в помещении
  28. Схема подключения двух стабилизаторов в помещении
  29. Схема подключения двух стабилизаторов в помещении
  30. Схема подключения двух стабилизаторов в помещении
  31. Схема подключения двух стабилизаторов в помещении
  32. Схема подключения двух стабилизаторов в помещении
  33. Схема подключения двух стабилизаторов в помещении
  34. Схема подключения двух стабилизаторов в помещении
  35. Тема: Последовательное соединение м/с аналоговых стабилизаторов
  36. Последовательное соединение м/с аналоговых стабилизаторов
  37. Схемы простых стабилизаторов напряжения
  38. Параметрический стабилизатор
  39. Компенсационный стабилизатор
  40. Стабилизаторы на микросхемах
  41. Последовательный стабилизатор
  42. Параллельный стабилизатор
  43. Стабилизатор на микросхеме с 3-мя выводами
  44. Стабилизаторы на транзисторах

Два стабилизатора напряжения параллельно

«Нельзя просто так взять и запараллелить источники напряжения»

Не раз и не два мне попадались предложения типа «давайте включим два стабилизатора напряжения параллельно, если не хватает выходного тока одного». В том числе и здесь:
Тут — в авторском тексте о ПК Специалист (Spectrum) habr.com/ru/post/247211 (в итоге — автор применил двухканальный импульсный источник питания).
Тут — в комментариях habr.com/ru/post/400617/#comment_18002157
И тут — в комментариях habr.com/ru/post/400381/#comment_17983821
Да тысячи их:
electronics.stackexchange.com/questions/261537/dc-dc-boost-converter-in-parallel
forum.allaboutcircuits.com/threads/paralleling-lm317ts.16198
forum.arduino.cc/index.php?topic=65327.0 (обсуждение довольно показательное с точки зрения пренебрежения схемотехникой и энергосбережением мобильного робота).

Вспомнив немного ТОЭ и воспользовавшись симулятором TINA-TI, покажем несбыточность малую обоснованность надежд на благоприятный исход этого чита.

О параллельном соединении источников напряжения с точки зрения закона Ома, правил Кирхгофа и примкнувших к ним ТОЭ.

Два источника напряжения (E1, E2) с внутренними сопротивлениями (Rвн1, Rвн2) работают на нагрузку (Rн). Составив и упростив 3 уравнения — получим:
Uн = Rн * (Rвн2*E1 + Rвн1*E2) / (Rвн1*Rвн2 + Rн*[Rвн1+Rвн2]);
I1 = (E1 — Uн) / Rвн1;
I2 = (E2 — Uн) / Rвн2.
Беря номинал 3.3 В с разбалансом ЭДС в ± 0.1% (3,303 и 3,297 В, соответственно), внутренние сопротивления 0,01 Ом и сопротивление нагрузки 3,3 Ом — получим токи 0,8 и 0,2 А соответственно (± 60% от ожидаемых 0.5 А) при напряжении на нагрузке 3,295 В. Обратите внимание на величину исходного разбаланса — если не брать сверхточные и сверхстабильные источники опорного напряжения (стоимостью как крыло от вертолёта), она мало достижима в «вульгарной» микроэлектронике. А чем качественнее наши источники напряжения (меньше их внутреннее сопротивление) и чем выше сопротивление нагрузки — тем больше будет разбаланс токов при прочих равных.
Вооружась этой простой теорией — посмотрим пристальнее на внутреннюю структуру стабилизаторов напряжения.

О параллельном соединении стабилизаторов напряжения с точки зрения наличия в них обратной связи.

Как известно, чуть более чем все современные стабилизаторы напряжения строятся как компенсационные — обратная связь отслеживает напряжение на выходе стабилизатора и поддерживает его постоянным либо меняя внутреннее сопротивление между входом и выходом, либо меняя соотношение замкнутого и разомкнутого состояний между входом и выходом. Из этого вытекает тот факт, что если подать на выход стабилизатора напряжение превышающее его выходное, то ОС должна будет отключить регулирующие элементы и данный стабилизатор выйдет из борьбы за жизнь нагрузки.
Не будем рассматривать здесь случаи линейного стабилизатора с push-pull выходом (используются как источники питания терминаторов DDR-памяти) и импульсных стабилизаторов с синхронным выпрямлением. Первые — должны, а вторые, теоретически, — могут пытаться снижать напряжение на своём выходе.
В случае применения импульсных стабилизаторов — можно рассмотреть и такие гипотетические вещи, как биение частот преобразования или их самосинхронизация… Но это выходит за рамки моих текущих интересов. Для закрытия теоретической части добавлю, что если кто-то предложит использовать внешнее тактирование импульсных стабилизаторов со сдвигом фаз, то Вы опоздали. Микропроцессоры Intel и AMD уже многие годы питаются от многофазных конвертеров, а если есть готовый двух- и более фазный контроллер, то городить внешнюю синхронизацию для отдельных стабилизаторов — бессмысленно.
А теперь — перейдём к симуляции реальности.

О параллельном соединении стабилизаторов напряжения в симуляторе.

Первый пример — вариация простенького линейного стабилизатора из app. note на регулируемый источник опорного напряжения типа 431.
Он применялся, например, в некоторых ранних блоках питания ATX для стабилизации напряжения 3.3 В. На сток регулирующего транзистора подавалось 5 В, а резистор в цепи затвора питался от 12 В.
Поскольку в симуляции нас не волнует КПД, то для простоты на входе один единственный источник питания. Также — с ходу я не нашёл средства внести погрешность в опорное напряжение TL431, кроме как добавить генератор напряжения G1 в цепь управляющего электрода. Вот результат расчёта (меню «Анализ постоянного тока», раздел «Переходные характеристики»):

Как видим — достаточно разбаланса опорных напряжений в 3 мВ, чтобы один из стабилизаторов превратился в тыкву. А это всего 0,12% от номинального, да ещё отнюдь не каждая 431 имеет точность лучше 0.5%.
Предложение «поставим в цепь обратной связи триммер и подгоним правильное деление тока нагрузки» я отметаю на том основании, что типичные подстроечные резисторы (Bourns и muRata, керметные, одно и многооборотные) — имеют вибростойкость до 1% (изменение зафиксированного отношения напряжений или сопротивлений после воздействия вибрации с ускорением 20..30 G).
Упомянутые в ссылках на зарубежные ресурсы пляски с последовательными резисторами на выходах стабилизаторов — я даже рассматривать не буду. Просто потому, что этим убивается то, для чего собственно и ставится стабилизатор напряжения — постоянство напряжения на нагрузке при изменении её тока потребления.
Потом я вспомнил, что на выходе обычно есть конденсаторы… Добавление на выходы конденсаторов по 1000 мкФ с ESR 100 мОм не внесло кардинальных отличий в результаты симуляции параллельной работы этих стабилизаторов (меню «Анализ переходных процессов»).

Возможно, кто-то скажет: «Сработает ограничение по току у первого стабилизатора и второй тоже подключится». Но очевидно, что даже если это произойдёт, то первый всё равно продолжит работать с перегрузкой, что не прибавит надёжности нашей системе. Вот пример работы пары LP2951 (максимальный ток нагрузки — 100 мА, ограничение тока в модели — около 160 мА) с общим током нагрузки около 180 мА.
Почему такое старье? Потому, что они есть у меня в удобном для втыкания в «бредовую борду» DIP’е и, если кто-то из читателей пожелает пойти путём Фомы, то я смогу измерить всё IRL.
Результаты симуляции (меню «Анализ переходных процессов»):

Как видите — второй и не думает деятельно участвовать в спасении нагрузки от голода. А благодаря бóльшему коэффициенту усиления — выход из игры происходит при меньшем разбалансе.

На этом — всё. Питайтесь правильно!

Вывод.

Если максимальный выходной ток стабилизатора напряжения не обеспечивает потребности питаемой схемы, то есть только два выхода — заменить стабилизатор на модель с бóльшим выходным током или использовать схемотехническую балансировку выходных токов нескольких стабилизаторов.

P.S. «Всякое лыко — в строку». Во время подготовки статьи на глаза попалась широко растиражированная в документации на стабилизатор типа 1117 схема переключателя «батарея — сеть» с параллельным включением их выходов. К ней есть вопросы о практической применимости, но тему статьи она подтверждает чуть более, чем полностью. Привожу фрагмент из документации фирмы «ON semiconductor», который снабжён текстовыми пояснениями:

The 50 Ohm resistor that is in series with the ground pin of the upper regulator level shifts its output 300 mV higher than the lower regulator. This keeps the lower regulator off until the input source is removed.

P.P.S. Дописал вывод. Точнее — скопировал его из синопсиса.

Synopsis: You can’t boost output current of weak voltage regulators by simple parallel connection. You must use tougest one or special schematic for properly current sharing.

Стабилизаторы напряжения: схемы, параметры, диаграммы

Параллельный параметрический стабилизатор, последовательный стабилизатор на биполярном транзисторе. Практические расчеты.

Доброго дня уважаемые Радиолюбители! Сегодня на сайте “Радиолюбитель“, в разделе “Практикум начинающего радиолюбителя“, мы продолжим рассмотрение статьи “Источники питания радиолюбительских устройств“. Напомню, что в прошлый раз, изучая схему источника питания радиолюбительских устройств, мы остановились на назначении и расчете сглаживающего фильтра:

Сегодня мы рассмотрим последний элемент – стабилизатор напряжения.

Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при колебаниях входного напряжения и сопротивления нагрузки

Сегодня мы рассмотрим два простейших стабилизатора напряжения: — параллельный параметрический стабилизатор напряжения на стабилитроне; – последовательный стабилизатор напряжения на биполярном транзисторе.

Технические характеристики стабилизатора LM338:

  • Обеспечения выходного напряжения от 1,2 до 32 В.
  • Ток нагрузки до 5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Интегральная микросхема LM338 выпускается в двух вариантах корпусов — это в металлическом корпусе TO-3 и в пластиковом TO-220:

Принципы расчета характеристик

Основными показателями стабилизатора являются максимальное выходное напряжение Uвых, минимальное выходное напряжение Uвых1 и максимальный ток Imax. Допустим, что эти величины составляют 14 Вольт, 1,5 Вольта и 1 Ампер, соответственно. Вычисляем входное напряжение по формуле:

Параметрический стабилизатор напряжения

Uвх=Uвых+ 3, где 3 – это коэффициент падения напряжение на переходе коллектор – эмиттер.

Обратите внимание! Паспортные параметры транзистора должны обеспечивать функционирование в полуоткрытом режиме и выдерживать разницу напряжений, возникающую между выходным напряжением и выходными данными.

Далее следует рассчитать максимальную мощность Pmax, которую будет рассеивать транзистор:

  • Pmax=1.3(Uвх-Uвых)Imax=1.3(17-14)=3.9 Вт;
  • Pmax=1.3(Uвх-Uвых1)Imax=1.3(17-1.5)=20,15 Вт.

Как видно, большее значение получается при расчете для минимального входного напряжения, и эта величина будет правильной, для того чтобы подобрать транзистор по справочнику. У нас это будет КТ817.

Важно! Значение напряжение должно быть больше входного значения, а ток – больше заданного максимального значения. Иначе элемент будет работать на пределе возможностей и быстро выйдет из строя.


Схема на полевом транзисторе

Теперь нужно учесть Iб maxток базы самого транзистора:

Iб max=Imax/h21Э min, где h21Э min – коэффициент передачи тока (в нашем случае эта величина равна 25).

Зная эти показатели, можно определить характеристики стабилизатора напряжения на транзисторе. Стабилизированное напряжение равно 14 вольтам, а ток по формуле – 0.04 А. По этим показателям подходит Д814Д, но в этом случае ток базы будет составлять 0,005 А, то есть надо понизить выходные значение. Для этого используется второй транзистор (КТ315). За счет его использования нагрузка уменьшится на величину максимального коэффициента передачи тока второго транзистора (у нас h21Э=30). Таким образом, ток будет составлять 0,04/30=0,00133 мА.

Теперь определим показатели для Rббалластного резистора:

Rб=(Uвх-Uст)/(Iб max+Iст min)=(17-14)/(0,00133+0,005) = 474 Ом, где:

  • Iст min – ток стабилизации;
  • Uст – напряжение стабилизации стабилитрона.

Затем считаем балластную мощность:

Параметры дополнительного резистора рассчитывают редко, при выборе этой детали нужно учесть только одно, что его значение тока должно быть меньше максимально нагрузочного. У нас используется резистор с сопротивлением в 1 Ом.

Примеры применения стабилизатора LM338 (схемы включения)

Следующие примеры продемонстрируют вам несколько очень интересных и полезных схем питания построенных с помощью LM338.

Простой регулируемый блок питания на LM338

Данная схема — типовое подключение обвязки LM338. Схема блока питания обеспечивает регулируемое выходное напряжение от 1,25 до максимума подаваемого входного напряжения, которое не должно быть более 35 вольт.

Переменный резистор R1 используется для плавного регулирования выходного напряжения.

Простой 5 амперный регулируемый блок питания

Эта схема создает выходное напряжение, которое может быть равно напряжению на входе, но ток хорошо изменяется и не может превышать 5 ампер. Резистор R1 точно подобран таким образом, чтобы поддерживать безопасные 5 ампер предельного тока ограничения, которые могут быть получены из цепи.

Регулируемый блок питания на 15 ампер

Как уже было сказано ранее микросхема LM338 в одиночку может осилить только 5А максимум, однако, если необходимо получить больший выходной ток, в районе 15 ампер, то схема подключения может быть модифицирована следующим образом:

В данном случае используются три LM338 для обеспечения высокой токовой нагрузки с возможностью регулирования выходного напряжения.

Переменный резистор R8 предназначен для плавной регулировки выходного напряжения

Источник питания с цифровым управлением

В предыдущей схеме источника питания, для осуществления регулировки напряжения использовался переменный резистор. Ниже приведенная схема позволяет посредством цифрового сигнала подаваемого на базы транзисторов получать необходимые уровни выходного напряжения.

Величина каждого сопротивления в цепи коллектора транзисторов подобрана в соответствии с необходимым выходным напряжением.

Схема контроллера освещения

Кроме питания, микросхема LM338 также может быть использована в качестве светового контроллера. Схема показывает очень простую конструкцию, где фототранзистор заменяет резистор, который используется в качестве компонента для регулировки выходного напряжения.

Лампа, освещенность которой необходимо держать на стабильном уровне, питается от выхода LM338. Ее свет падает на фототранзистор. Когда освещенность возрастает сопротивление фоторезистора падает и выходное напряжение уменьшается, а это в свою очередь уменьшает яркость лампы, поддерживая ее на стабильном уровне.

Зарядное устройство 12В на LM338

Следующую схему можно использовать для зарядки 12 вольтовых свинцово-кислотных аккумуляторов. Резистором R* можно задать необходимый ток зарядки для конкретного аккумулятора.


Путем подбора сопротивления R2 можно скорректировать необходимое выходное напряжение в соответствии с типом аккумулятора.

Схема плавного включения (мягкий старт) блока питания

Некоторые чувствительные электронные схемы требуют плавного включения электропитания. Добавление в схему конденсатора С2 дает возможность плавного повышения выходного напряжения до установленного максимального уровня.

Принцип работы стабилизаторов


Различные типы стабилизаторов напряжения
Принцип функционирования зависит от типа оборудования. Для выделения общих моментов целесообразно рассмотреть конструкцию. Прибор состоит из таких элементов:

  • Система управления. Позволяет отслеживать вольтаж на выходе, доводя его до стабильного показателя 220 В. Оборудование работает с погрешностью 10-15 %.
  • Автоматический трансформатор. Имеется у релейных, симисторных, сервомоторных модификаций. Повышает или понижает номинал напряжения.
  • Инвертор. Механизмом из генератора, трансформатора и транзисторов оснащаются инверторные модели. Элементы через первичную обмотку могут пропускать либо выключать ток, формируя напряжение на выходе.
  • Защитный блок, источник вторичного питания. Имеются у моделей, рассчитанных на 220 Вольт.

Функция байпаса или транзита позволяет стабилизаторам подавать напряжение на выход до момента пресечения установленного предела.

Принцип действия релейных моделей


Релейный аппарат регулирует вольтаж посредством замыкания контактов реле. Контроль параметров осуществляется с помощью микросхемы, элементы которой сравнивают сетевое напряжение с опорным. Если показатели не совпадают, от микросхем стабилизаторов напряжения поступают сигналы на понижение или повышение обмотки.

При дешевизне и компактности релейное оборудование медленно реагирует на скачки напряжения, может кратковременно выключаться, не выдерживает перегрузки.

Погрешность устройств – 5-10 %.

Как работают сервоприводные приборы


Основные узлы сервоприводного аппарата – серводвигатель и автоматический трансформатор. Если напряжение отклонилось от нормы, поступает сигнал на переключение трансформаторных от контроллера к мотору. Сравнение показателей опорного и входного вольтажа осуществляет плата управления.

Сервоприводные стабилизаторы могут регулировать нагрузку трехфазной и однофазной сети. Они отличаются стойкостью, надежностью, исправным функционированием при перегрузке.

Точность приборов – 1 %.

Принцип работы инверторных устройств


Инверторный стабилизатор регулирует напряжение по системе двойного преобразования:

  1. Переменный ток на входе выравнивается, пропускается через конденсаторный фильтр пульсации.
  2. Выпрямленный ток подается к инвертору, трансформируется в переменный и поступает на нагрузку.

Выходное напряжение остается стабильным.

Приборы с инверторами отличаются быстротой реакции, КПД от 90%, бесперебойной и бесшумной работой в диапазоне 115-300 Вольт.

Диапазон регулирования аппарата снижается, если нагрузка увеличивается.

Подключение однофазных потребителей

Наиболее рациональным подходом к электроснабжению частного дома будет выделение из общего числа потребителей обособленную группу, для которой требуются стабильные параметры напряжения. Как правило, повышенная стабильность требуется для телевизора, холодильника, офисной техники и средств связи. Другие бытовые приборы, особенно с нагревательными ТЭНами, вовсе необязательно подключать к стабилизатору. Электрочайники и электрические котлы все равно будут работать, поскольку перепады напряжения для них не играют решающей роли в выполнении основных функций.

В домашнем щитке после электросчетчика устанавливается защитное оборудование – дифференциальный автомат или УЗО с автоматическим выключателем. От них отдельными кабелями подводится фаза и ноль к входным клеммам стабилизатора. Корпус устройства также отдельным проводом подключается к шине РЕ, установленной в щитке. От выходных клемм стабилизатора к потребителю поступает фаза и рабочий ноль. Защитный ноль соединяется с шиной РЕ.

Следующий вариант предполагает подключение к стабилизатору сразу нескольких групп потребителей. В упрощенной схеме не используется защитное заземление, а стабилизатор подключается через одну клемму рабочего нуля. Работу схемы лучше всего рассматривать на примере трех групп потребителей.

Два стабилизатора напряжения параллельно

Сообщение ПАВ » 23 авг 2017, 17:15

Схема подключения двух стабилизаторов в помещении

Сообщение elalex » 23 авг 2017, 18:13

Схема подключения двух стабилизаторов в помещении

Сообщение ПАВ » 23 авг 2017, 18:29

Схема подключения двух стабилизаторов в помещении

Сообщение aRTEMMM » 23 авг 2017, 21:34

elalex

Вы правы, последний раз я рисовал схемы в техникуме 20 лет назад, попытался изобразить как понимаю. Это, конечно не удобно «читать», извиняюсь.

Автоматы все Schneider Electric Resi9 1 полюс

Неверно обозначил, я имел ввиду силовой щит у квартиры, от которого идет кабель на внутренний щиток в квартире, схему которого попытался сделать на рисунке.

Меня волнует вопрос, стоит ли вообще вести землю на щиток в квартире т.к. в щите у наших двух квартир земля идет на сам щит и не уходит отдельным проводом вниз (щит с 3-ми фазами

Один уже работает год с двумя ПК правда подключен к линии напрямую, а потом уже автоматы с розетками. А в чем несовместимость?

Сейчас один стоит и перед розеткой автомат на 10А, не вышибало.

Спасибо за совет. Я первую схему тоже с общим нулем на все сделал, но потом перестраховался и перечертил.

Почему Вы так думаете, что навело на эту мысль?

Компьютеры (серверы) мощные, нагрузку я считал не с потолка.
Остались вопросы по заземлению (стоит ли тянуть), нулевой шине (сделать общую?), выбор сечения проводов в проектированном щитке.
Скажите, пожалуйста, сама схема соединений правильная?

Схема подключения двух стабилизаторов в помещении

Сообщение elalex » 23 авг 2017, 23:37

Схема подключения двух стабилизаторов в помещении

Сообщение ПАВ » 24 авг 2017, 09:19

А как- по шильдикам на БП или тавки измеряли реальное потребление?
Все ИмпБП имеют на входе фильтр, требующий нормального заземления, иначе на корпусе компьютера окажется вдруг и внезапно половина сетевого, убить не убьет, но ошарашить может, потому все они имеют сетевые вилки с заземлителями.
Вы не ответили ни разу на вопрос о напряжении, вам это не интересно, у вас одна цель- поставить СН и все тут?

Схема подключения двух стабилизаторов в помещении

Сообщение aRTEMMM » 24 авг 2017, 11:36

Мерил ваттметром реальное потребление компов, которые установлены и которые планируется установить.
Стабилизаторы решил подставить т.к. у нас какой-то непорядок на подстанции и напряжение бывает скачет или падает ниже 140В, БП при этом не вытягивают напряжение и отрубаются. 2 ПК работают уже год на стабилизаторе, стало гораздо меньше отключений.
Характер колебаний напряжения проследить не могу, но что не стабильное и ниже номинала бывает- это точно.
То заземление, что я описал своим обывательским языком не подойдет т.к. им не является?

Схема подключения двух стабилизаторов в помещении

Сообщение elalex » 24 авг 2017, 17:47

Схема подключения двух стабилизаторов в помещении

Сообщение ПАВ » 24 авг 2017, 17:54

Схема подключения двух стабилизаторов в помещении

Сообщение aRTEMMM » 24 авг 2017, 21:20

elalex
Благодарю за наводку на матчасть. Как понял при TN-C все заземлю как рисовал и оставлю мотком в этажном щите до лучших времен. Местность Москва, да-да, бывают и тут проблемы с электроснабжением (пока не исправят). Я боюсь только за ПК и делаю подвод кабеля именно к ним, оборудование дорогостояще. Серверы кормят.

ПАВ
Вы сравниваете реле напряжение и стабилизатор? Нет РАЗНИЦЫ ?
Отключение по заданным параметрам и стабилизация вроде не одно и тоже. Отключится оборудование которое должно работать 24/7 или нет… нет разницы..

Про нулевую шину не подскажите точно? Объединить вход и выход N стабилизаторов или разделить?

Схема подключения двух стабилизаторов в помещении

Сообщение elalex » 24 авг 2017, 21:48

Схема подключения двух стабилизаторов в помещении

Сообщение ПАВ » 25 авг 2017, 07:52

aRTEMMM писал(а): Источник цитаты ПАВ
Вы сравниваете реле напряжение и стабилизатор? Нет РАЗНИЦЫ ?
Отключение по заданным параметрам и стабилизация вроде не одно и тоже. Отключится оборудование которое должно работать 24/7 или нет… нет разницы..

Про нулевую шину не подскажите точно? Объединить вход и выход N стабилизаторов или разделить?

Тема: Последовательное соединение м/с аналоговых стабилизаторов

Опции темы
  • Версия для печати
  • Версия для печати всех страниц
  • Подписаться на эту тему…
  • Поиск по теме

    Последовательное соединение м/с аналоговых стабилизаторов

    Есть такая цепь
    Последовательно соединены два аналоговых стабилизатора
    Первый – 7812 на 12 вольт
    Второй на 9 вольт
    Вопрос.
    Какую емкость поставить на выходе первого и входе второго соответственно стабилизаторов.
    Если поставить 100-470 мкф не рискуем ли мы получить ли возбуд всей цепочки или одной из м/с?

    Мне кажется, что если не поставить эту емкость, то получим вероятность возбуда. Такая архитектура трудится много лет в одной из конструкций. Первый стаб был 142ЕН1, второй — КРЕН5. Без емкости отчетливо загенерило на килогерцах. С испугу ввел аж П-фильтр CLC между стабами. Генерация пропала. Но вызвана она была 142ЕН1. При замене ее на более современную, генерации добиться не удалось даже при отсутствии промежуточной емкости.

    Сименс в подобных схемах ставит между стабилизаторами не только электролитические и керамические конденсаторы, но и дроссели (гантельки).

    1) В описаниях аналоговых стабилизаторов обычно пишется, что емкость на выходе должна быть не около10 мкф. + еще керамика 0,1-1 мкф
    При большом значении или при отсутствии керамических конденсаторов появляется риск возбуда.
    Насколько это верно?
    2) А если для развязки м/с поставить между выходом — входом диод?

    Если поставить диод, то упадёт напряжение на входе 9_ти вольтового стабилизатора, а разница между входным и выходным и так не велика-3вольта всего.

    Керамика по 0.1 мкФ подразумевается (т.е. всегда по входу/выходу).
    «Выходная» емкость на работу (Rвых) грамотно спроектированного стаба почти не влияет. Её не нужно делать «большой», ибо зарядный ток в момент влючения и переходного процесса может повредить регулирующему транзистору.
    Про пользу диода с ходу сказать трудно. Хорошо бы промоделировать конструкцию, подавая на вход всей схемы меандр [0 — Uпит] 1-2 Гц.
    ———
    По поводу емкости — я бы поставил 22-33 мкФ. Вполне достаточно, ведь основная фильтрация уже была после выпрямителя. Но если у стаба 12 В есть ещё своя нагрузка, то может потребоваться некоторо (разумное) увеличение С.

    Последний раз редактировалось serge22; 07.11.2011 в 12:48 .

    Какой смысл их последовательно ставить, когда есть кренки на эти напряжения.

    смысл в том, что усновное устройство питается от 9 вольт, но могут быть подключены потребители и на 12 вольт.
    Т.е. нужны два напряжения.
    Ну и рассеиваемая мощность раскидывается на 2 корпуса.
    Плюс я заметил, что при двух включенных последовательно стабилизаторах на выходе уменьшается уровень сетевых помех. Причем не НЧ с частотой 50 или 100 гц, а ВЧ с частотами еденицы, десятки сотни кгц.

    Последний раз редактировалось alexis69; 07.11.2011 в 12:53 .

    Схемы простых стабилизаторов напряжения

    Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

    Параметрический стабилизатор

    Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

    Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

    На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

    Компенсационный стабилизатор

    Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

    Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

    Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

    Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

    В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

    При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

    Стабилизаторы на микросхемах

    Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

    Последовательный стабилизатор

    • 1 – источник напряжения;
    • 2 – Элемент регулировки;
    • 3 – усилитель;
    • 4 – источник основного напряжения;
    • 5 – определитель напряжения выхода;
    • 6 – сопротивление нагрузки.

    Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

    Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

    Параллельный стабилизатор

    • 1 – источник напряжения;
    • 2 –элемент регулирующий;
    • 3 – усилитель;
    • 4 – источник основного напряжения;
    • 5 – измерительный элемент;
    • 6 – сопротивление нагрузки.

    Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

    Стабилизатор на микросхеме с 3-мя выводами

    Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

    1. U вх – необработанное напряжение входа;
    2. U вых –напряжение выхода.

    Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

    Микросхема имеет вид:

    Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

    Стабилизаторы на транзисторах

    На 1-м рисунке схема на транзисторе 2SC1061.

    На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

    При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

    • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
    • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
    • 9 В — напряжение выхода, R1=180, Vd=10

    На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.