Как найти напряжение через КПД?

Что такое источник тока, определение с точки зрения физики. Характеристики питающих источников электротока. Мощность источника токов и внутреннее сопротивление. Коэффициент полезного действия в источнике электротоков.
Содержание
  1. Как найти напряжение через КПД?
  2. КПД источника тока
  3. Что такое источник тока
  4. КПД электрической цепи
  5. Что такое КПД ИТ
  6. Исследование мощности и КПД генератора тока
  7. Мощность ИТ и внутреннее сопротивление
  8. Формула кпд через мощность тока
  9. Что такое источник тока
  10. КПД электрической цепи
  11. Ватт в ватте?
  12. Что такое КПД ИТ
  13. Физика
  14. Исследование мощности и КПД генератора тока
  15. Мощность ИТ и внутреннее сопротивление
  16. КПД источника тока
  17. КПД электрической цепи
  18. Что такое КПД источника тока
  19. Исследование мощности и КПД источника тока
  20. ElectronicsBlog
  21. Электротехника часть 3 электрические цепи
  22. Составные части электрических цепей
  23. Источник ЭДС и источник тока
  24. Закон Ома для полной цепи
  25. КПД источника энергии
  26. Коэффициент полезного действия (КПД)
  27. КПД: понятие коэффициента полезного действия
  28. КПД в механике
  29. Ради чего все это затеяли?
  30. За счет чего процесс происходит?
  31. КПД в термодинамике
  32. Идеальная тепловая машина: цикл Карно
  33. КПД в электродинамике

Как найти напряжение через КПД?

КПД источника тока

Для работы электронных и электрических устройств необходимо подключать их к источникам питания. Источники питания могут быть как стационарные, так и автономные. В качестве питающих устройств используются гальванические элементы или преобразователи электроэнергии. И те, и другие являются источниками тока или напряжения.

Что такое источник тока

Это устройство или элемент, в общем понимании – двухполюсник, у которого проходящий через него ток не зависит от величины напряжения на полюсах. Основные характеристики источника тока (ИТ):

  • величина;
  • внутренняя проводимость (импеданс).

Внутреннее сопротивление такого двухполюсника очень мало. У идеального источника (ИИТ) оно приближается к нулю.

Генераторы движения электронов могут быть как независимыми, так и зависимыми.

Первые представляют собой идеальный двухполюсник, с двумя зажимами. У них ток, движущийся от одного зажима к другому, не зависит от формы и величины разности потенциалов на зажимах. Его изменения происходят по своим законам.

Второй тип ИТ – идеальный двухполюсник, с двумя зажимами, у которого движение зарядов от одного зажима к другому зависит от формы и величины напряжения на этих зажимах.

Существует управляемый зависимый ИТ. Он представляет собой идеальный двухполюсник, имеющий 2 зажима на входе и 2 зажима на выходе. Его особенность в том, что выходное значение тока на выходе зависит от его величины на входе. В таком ИТ происходит усиление мощности. Изменяя нулевое значение мощности на его входе, управляют величину мощности на выходных зажимах.

Информация. Управление производителем энергии может осуществляться напряжением (ИТУН) или током (ИТУТ). Одни находят применение для полевых триодов и электровакуумных ламп, вторые – для транзисторов биполярного типа.

В реальности генераторы тока имеют определённые ограничения по напряжению. Они далеки от идеальных ИТ и создают движение электричества в таком интервале напряжений, где их верхняя граница зависит от Uпит ИТ. Следовательно, у реального источника тока есть существенные пределы по нагрузке.

КПД электрической цепи

Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.

Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи.

Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт).

Формулы мощности:

P = U * I = U2/R = I2 * R,

где:

  • U – напряжение на нагрузке, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом.

Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной. Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:

где:

  • P – мощность, Вт;
  • A – работа, Дж;
  • ∆t – временной интервал, с.

Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:

Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:

где:

  • А – проделанная потребителем работа, Дж;
  • Q – количество энергии, взятой от источника, Дж.

Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её. Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.

Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.

Что такое КПД ИТ

Когда речь идёт о кпд источника тока, также рассматривают полезную и полную работу, совершаемую двухполюсником. Перемещая электроны во внешней цепи, он выполняет полезную работу, двигая их по всей цепи, включая и свою внутреннюю, он производит полную работу.

В виде формул это выглядит так:

  • А полезн. = q*U = I*U*t = I2*R*t;
  • А полн. = q*ε = I* ε*t = I2*(R+r)*t.

где:

  • q – количество энергии, Дж;
  • U – напряжение, В;
  • ε – ЭДС, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом;
  • r – импеданс источника, Ом;
  • t – время, за которое совершается работа, с.

С учётом этого можно выразить мощности двухполюсника:

  • Р полезн. = А полезн./t = I*U = I2*R;
  • P полн. = А полн./t = I*ε = I2*(R+r).

Формула кпд источников тока имеет вид:

η = Р полезн./P полн.= U/ε = R/ R+r.

Исследование мощности и КПД генератора тока

Максимальная полезная Pmax и максимальный КПДmax – несовместимые понятия. Нельзя добиться максимального КПД источника при максимальной мощности. Это обусловлено тем, что Р, отдаваемая двухполюсником, достигнет своего максимального значения только при условии согласования сопротивления нагрузки и внутреннего импеданса ИТ:

В этом случае КПД источника будет:

η = R/ R+r = r/ r+r = 1/2, что составляет всего 50%.

Для согласования двухполюсника и нагрузки применяют электронные схемы или согласующие блоки, для того чтобы добиться максимального отбора мощности от источника.

Мощность ИТ и внутреннее сопротивление

Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.

Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.

Оно выглядит так:

Движение электричества в цепи находится по формуле:

В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).

Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:

Pr = I² * r = E² * r/(R + r)².

На следующем этапе определяются с мощностью, отбираемой нагрузкой:

PR = I² * R = E² * R/(R + r)².

Общая Р на выходе двухполюсника будет равна сумме:

Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.

Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.

При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.

Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R Видео

Формула кпд через мощность тока

Для работы электронных и электрических устройств необходимо подключать их к источникам питания. Источники питания могут быть как стационарные, так и автономные. В качестве питающих устройств используются гальванические элементы или преобразователи электроэнергии. И те, и другие являются источниками тока или напряжения.


Источники электрического тока и напряжения

Что такое источник тока

Это устройство или элемент, в общем понимании – двухполюсник, у которого проходящий через него ток не зависит от величины напряжения на полюсах. Основные характеристики источника тока (ИТ):

  • величина;
  • внутренняя проводимость (импеданс).

Внутреннее сопротивление такого двухполюсника очень мало. У идеального источника (ИИТ) оно приближается к нулю.


Графическое обозначение и вольт-амперная характеристика (ВАХ) ИТ

Генераторы движения электронов могут быть как независимыми, так и зависимыми.

Первые представляют собой идеальный двухполюсник, с двумя зажимами. У них ток, движущийся от одного зажима к другому, не зависит от формы и величины разности потенциалов на зажимах. Его изменения происходят по своим законам.

Второй тип ИТ – идеальный двухполюсник, с двумя зажимами, у которого движение зарядов от одного зажима к другому зависит от формы и величины напряжения на этих зажимах.

Существует управляемый зависимый ИТ. Он представляет собой идеальный двухполюсник, имеющий 2 зажима на входе и 2 зажима на выходе. Его особенность в том, что выходное значение тока на выходе зависит от его величины на входе. В таком ИТ происходит усиление мощности. Изменяя нулевое значение мощности на его входе, управляют величину мощности на выходных зажимах.

Информация. Управление производителем энергии может осуществляться напряжением (ИТУН) или током (ИТУТ). Одни находят применение для полевых триодов и электровакуумных ламп, вторые – для транзисторов биполярного типа.

В реальности генераторы тока имеют определённые ограничения по напряжению. Они далеки от идеальных ИТ и создают движение электричества в таком интервале напряжений, где их верхняя граница зависит от Uпит ИТ. Следовательно, у реального источника тока есть существенные пределы по нагрузке.

КПД электрической цепи

Формула мощности электрического тока

Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.

Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи.

Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт).

Формулы мощности:

P = U * I = U2/R = I2 * R,

где:

  • U – напряжение на нагрузке, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом.

Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной. Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:

где:

  • P – мощность, Вт;
  • A – работа, Дж;
  • ∆t – временной интервал, с.

Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:

Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:

где:

  • А – проделанная потребителем работа, Дж;
  • Q – количество энергии, взятой от источника, Дж.

Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её. Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.

Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.


КПД электрической цепи

Ватт в ватте?

Единица мощности – ватт. Обычно мы видим, сколько ватт может обеспечить блок питания, на его этикетке. Большинство ПК уже имеют встроенный блок питания, поэтому при покупке нового компьютера это не проблема. Однако, если вы обновили или добавили новые компоненты к своим компьютерам, например, новый жесткий диск или новую систему охлаждения, то пора проверить мощность, которую может обеспечить блок питания вашего компьютера. Если общая мощность, необходимая компьютеру, больше, чем может обеспечить блок питания, он просто не будет работать. Теперь возникает вопрос: «Сколько ватт нужно моему компьютеру?» Это будет зависеть от общего количества энергии, необходимой компьютеру, в зависимости от мощности, необходимой каждому компоненту. Простые компьютеры на самом деле не требуют такой большой мощности, но сложные системы, например, используемые для игр,

Читать Что вам нужно для сборки игрового ПК

Еще один непонятный вопрос для большинства потребителей: «Обеспечивает ли блок питания компьютер постоянную мощность?» Ответ – нет. Мощность, которую вы видите на корпусе блока питания или этикетках, указывает только на максимальную мощность, которую он теоретически может подать в систему. Например, теоретически блок питания мощностью 500 Вт может подавать на компьютер максимум 500 Вт. На самом деле, блок питания потребляет небольшую часть энергии для себя и распределяет мощность по каждому из компонентов ПК в соответствии со своими потребностями. Мощность, необходимая для компонентов, варьируется от 3,3 В до 12 В. Если общая мощность компонентов должна увеличиться до 250 Вт, он будет использовать только 250 Вт из 500 Вт, что даст вам накладные расходы на дополнительные компоненты или будущие обновления.

Кроме того, мощность, подаваемая блоком питания, варьируется в периоды пиковой нагрузки и простоя. Когда компоненты доведены до предела, например, когда видеоредактор максимизирует графический процессор для задач с большим количеством графики, ему потребуется больше энергии, чем когда компьютер используется для простых задач, таких как просмотр веб-страниц. Количество потребляемой мощности блока питания будет зависеть от двух вещей; количество энергии, необходимое для каждого компонента, и задачи, которые выполняет каждый компонент.

Что такое КПД ИТ

Мощность электрического тока

Когда речь идёт о кпд источника тока, также рассматривают полезную и полную работу, совершаемую двухполюсником. Перемещая электроны во внешней цепи, он выполняет полезную работу, двигая их по всей цепи, включая и свою внутреннюю, он производит полную работу.

В виде формул это выглядит так:

  • А полезн. = q*U = I*U*t = I2*R*t;
  • А полн. = q*ε = I* ε*t = I2*(R+r)*t.

где:

  • q – количество энергии, Дж;
  • U – напряжение, В;
  • ε – ЭДС, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом;
  • r – импеданс источника, Ом;
  • t – время, за которое совершается работа, с.

С учётом этого можно выразить мощности двухполюсника:

  • Р полезн. = А полезн./t = I*U = I2*R;
  • P полн. = А полн./t = I*ε = I2*(R+r).

Формула кпд источников тока имеет вид:

η = Р полезн./P полн.= U/ε = R/ R+r.

Физика

Коэффициент полезного действия источника тока ( КПД ) определяется долей полезной мощности от полной мощности источника тока:

η = P полезн P полн ⋅ 100 % ,

где P полезн — полезная мощность источника тока (мощность, выделяющаяся во внешней цепи); P полн — полная мощность источника тока:

P полн = P полезн + P потерь ,

т.е. суммарная мощность, выделяющаяся во внешней цепи ( P полезн ) и в источнике тока ( P потерь ).

Коэффициент полезного действия источника тока (КПД) определяется долей полезной энергии от полной энергии, вырабатываемой источником тока:

η = E полезн E полн ⋅ 100 % ,

где E полезн — полезная энергия источника тока (энергия, выделяющаяся во внешней цепи); E полн — полная энергия источника тока:

E полн = E полезн + E потерь ,

Исследование мощности и КПД генератора тока

Схема стабилизатора тока на полевом транзисторе

Максимальная полезная Pmax и максимальный КПДmax – несовместимые понятия. Нельзя добиться максимального КПД источника при максимальной мощности. Это обусловлено тем, что Р, отдаваемая двухполюсником, достигнет своего максимального значения только при условии согласования сопротивления нагрузки и внутреннего импеданса ИТ:

В этом случае КПД источника будет:

η = R/ R+r = r/ r+r = 1/2, что составляет всего 50%.

Для согласования двухполюсника и нагрузки применяют электронные схемы или согласующие блоки, для того чтобы добиться максимального отбора мощности от источника.

Мощность ИТ и внутреннее сопротивление

Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.


Простая схема для исследования зависимости Рполезн. от R

Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.

Оно выглядит так:

Движение электричества в цепи находится по формуле:

В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).

Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:

Pr = I² * r = E² * r/(R + r)².

На следующем этапе определяются с мощностью, отбираемой нагрузкой:

PR = I² * R = E² * R/(R + r)².

Общая Р на выходе двухполюсника будет равна сумме:

Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.

Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.

При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.

Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R

КПД источника тока

В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом случае источник тока перемещает заряды во внешней цепи, совершая при этом работу, а во втором случае – заряды перемещаются во всей цепи. В этом процессе большое значение имеет КПД источника тока, определяемого, как соотношение внешнего и полного сопротивления цепи. При равенстве внутреннего сопротивления источника и внешнего сопротивления нагрузки, половина всей мощности будет потеряна в самом источнике, а другая половина выделится на нагрузке. В этом случае коэффициент полезного действия составит 0,5 или 50%.

  1. КПД электрической цепи
  2. Что такое КПД источника тока
  3. Исследование мощности и КПД источника тока
  4. Задачи на мощность тока и КПД

КПД электрической цепи

Рассматриваемый коэффициент полезного действия в первую очередь связан с физическими величинами, характеризующими скорость преобразования или передачи электроэнергии. Среди них на первом месте находится мощность, измеряемая в ваттах. Для ее определения существует несколько формул: P = U x I = U2/R = I2 x R.

В электрических цепях может быть различное значение напряжения и величина заряда, соответственно и выполняемая работа тоже отличается в каждом случае. Очень часто возникает необходимость оценить, с какой скоростью передается или преобразуется электроэнергия. Эта скорость представляет собой электрическую мощность, соответствующую выполненной работе за определенную единицу времени. В виде формулы данный параметр будет выглядеть следующим образом: P=A/∆t. Следовательно, работа отображается как произведение мощности и времени: A=P∙∆t. В качестве единицы измерения работы используется джоуль (Дж).

Для того чтобы определить, насколько эффективно какое-либо устройство, машина электрическая цепь или другая аналогичная система, в отношении мощности и работы используется КПД – коэффициент полезного действия. Данная величина определяется как отношение полезно израсходованной энергии, к общему количеству энергии, поступившей в систему. Обозначается КПД символом η, а математически определяется в виде формулы: η = A/Q x 100% = [Дж]/[Дж] х 100% = [%], в которой А – работа выполненная потребителем, Q – энергия, отданная источником. В соответствии с законом сохранения энергии, значение КПД всегда равно или ниже единицы. Это означает, что полезная работа не может превышать количество энергии, затраченной на ее совершение.

Таким образом, определяются потери мощности в какой-либо системе или устройстве, а также степень их полезности. Например, в проводниках потери мощности образуются, когда электрический ток частично превращается в тепловую энергию. Количество этих потерь зависит от сопротивления проводника, они не являются составной частью полезной работы.

Существует разница, выраженная формулой ∆Q=A-Q, наглядно отображающей потери мощности. Здесь очень хорошо просматривается зависимость между ростом потерь мощности и сопротивлением проводника. Наиболее ярким примером служит лампа накаливания, КПД у которой не превышает 15%. Остальные 85% мощности превращаются в тепловое, то есть в инфракрасное излучение.

Что такое КПД источника тока

Рассмотренный коэффициент полезного действия всей электрической цепи, позволяет лучше понять физическую суть КПД источника тока, формула которого также состоит из различных величин.

В процессе перемещения электрических зарядов по замкнутой электрической цепи, источником тока выполняется определенная работа, которая различается как полезная и полная. Во время совершения полезной работы, источника тока перемещает заряды во внешней цепи. При полной работе, заряды, под действием источника тока, перемещаются уже по всей цепи.

В виде формул они отображаются следующим образом:

  • Полезная работа – Аполез = qU = IUt = I2Rt.
  • Полная работа – Аполн = qε = Iεt = I2(R +r)t.

На основании этого, можно вывести формулы полезной и полной мощности источника тока:

  • Полезная мощность – Рполез = Аполез /t = IU = I2R.
  • Полная мощность – Рполн = Аполн/t = Iε = I2(R + r).

В результате, формула КПД источника тока приобретает следующий вид:

  • η = Аполез/ Аполн = Рполез/ Рполн = U/ε = R/(R + r).

Максимальная полезная мощность достигается при определенном значении сопротивления внешней цепи, в зависимости от характеристик источника тока и нагрузки. Однако, следует обратить внимание на несовместимость максимальной полезной мощности и максимального коэффициента полезного действия.

Исследование мощности и КПД источника тока

Коэффициент полезного действия источника тока зависит от многих факторов, которые следует рассматривать в определенной последовательности.

ElectronicsBlog

Обучающие статьи по электронике

Электротехника часть 3 электрические цепи

Всем доброго времени суток. В прошлой статье я рассказал о таких понятиях, как электрический ток, напряжение, сопротивление и основополагающем законе постоянного тока – законе Ома. Но этого, несомненно, мало для полного понимания процессов и возникающих закономерностей при функционировании электронных схем. В дальнейших статьях я постепенно буду формировать целостную картину такой интересной области техники как электроника.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Составные части электрических цепей

Как известно, для того, чтобы электрический ток в проводниках существовал длительное время необходимо, во-первых, существование разности потенциалов или напряжения, а во-вторых, восполнение необходимого количества разноимённых зарядов для возникновения этой разности потенциалов. Данным условиям соответствует некоторая совокупность элементов называемая электрической цепью.

Таким образом, электрической цепью называется совокупность устройств и объектов, которые образуют путь для электрического тока и электромагнитные процессы, в которых могут быть описаны с помощью понятий ЭДС, напряжения и электрического тока. Кроме того, для протекания электрического тока необходима замкнутая электрическая цепь. В общем случае электрическая цепь состоит из источника электрической энергии, приемника электрической энергии, соединительных проводов, а также вспомогательных элементов, выполняющих разнообразные функции.

Источником электрической энергии является устройство, которое выполняет преобразование неэлектрической энергии в электрическую. Например, аккумуляторы осуществляют преобразование энергии химических реакций в электрическую энергию, а генераторы – преобразование механической энергии. Таким образом, как известно из предыдущей статьи источники энергии называют также источниками ЭДС.

Приёмником электрической энергии, также называемые нагрузками является устройство, в котором выполняется действие противоположное источнику энергии, то есть электрическая энергия преобразуется в неэлектрическую. Например, в лампочке электрическая энергия преобразуется в световую и тепловую энергию, а в электродвигателе – в механическую энергию.

К вспомогательным устройствам относятся различные коммутирующие, распределительные и измерительные приборы и объекты.

Электрические цепи изображают на чертежах в виде принципиальных электрических схем, где каждому элементу электрической цепи соответствует свой графический элемент. Принципиальные схемы показывают назначение каждого элемента цепи, а также его взаимодействие с остальными элементами, однако при расчётах они не очень удобны. Поэтому при расчётах пользуются так называемыми схемами замещения, которые также как и принципиальные схемы изображаются с помощью графических элементов, однако элементы схем замещения выбираются так, чтобы с необходимым приближением описать работу электрической цепи. Пример изображения принципиальных электрических схем и схем замещения показано ниже


Принципиальная схема (слева) и схема её замещения (справа).

Схемы замещения состоят из следующих элементов: контур, ветвь и узел. Ветвь – это один элемент либо последовательное соединение нескольких элементов. Узел – место соединения трёх и более ветвей. Контур – замкнутый путь, проходящий по ветвям так, чтобы ни один узел и ни одна ветвь не встречались больше одного раза.

Таким образом, зная параметры всех элементов схемы замещения, возможно при помощи законов электротехники определить электрическое состояние всей электрической цепи, то есть рассчитать режим её работы.

Источник ЭДС и источник тока

При анализе электрических цепей, часто используют понятие идеального элемента, то есть такого элемента, в котором сосредоточен только один параметр, в отличие от реального элемента, в котором кроме одного основного параметра имеют место быть паразитные параметры. Например, резистор можно представить в виде идеального сопротивления, однако в реальном резисторе присутствует как емкость (например, между выводами), так и индуктивность (в проволочном резисторе, где используется намотанная на керамический каркас проволока). То есть идеальные элементы используются для упрощения анализа электрической цепи.

Источники энергии в электрических цепях при анализе схем также упрощают, кроме того их делят на два типа: источники ЭДС и источники тока. Рассмотрим каждый из них в отдельности.

Идеальный источник ЭДС характеризуется тем, что напряжение на его выводах не зависит от протекающего через него тока, то есть внутри такого источника ЭДС отсутствуют пассивные элементы (сопротивление R, индуктивность L, емкость С), и поэтому падение напряжения на пассивных элементах отсутствует.

Таким образом, напряжение на его выводах равно ЭДС, а ток теоретически не имеет ограничения, то есть если замкнуть его выходные зажимы, то электрический ток должен быть бесконечно большим. Поэтому идеальный источник ЭДС можно рассматривать, как источник бесконечной мощности. Однако в реальности ток имеет конечное значение, так как падение напряжения на внутреннем сопротивлении при коротком замыкании выводов уравновешивает ЭДС источника. Таким образом, реальный источник ЭДС можно изобразить в виде идеального источника ЭДС с последовательно подключённым пассивным элементом, который ограничивает мощность, отдаваемую во внешнюю цепь.


Источники ЭДС: идеальный (слева) и реальный (справа).

Идеальный источник тока характеризуется тем, что ток протекающий через него не зависит от напряжения, которое присутствует на его выводах, то есть сопротивление внутри источника тока бесконечно велико и поэтому параметры внешних элементов электрической цепи не влияют на ток протекающий через источник.

Таким образом, при бесконечном увеличении сопротивления также увеличивается напряжение на выводах идеального источника тока, поэтому и мощность растёт до бесконечности, то есть получается источник бесконечной мощности. Так как в реальности мощность всё же конечна, то реальный источник тока изображается, как идеальный источник тока с параллельно подключенным пассивным компонентом, характеризующим внутренние параметры источника тока, и ограничивает мощность, отдаваемую во внешнюю цепь.


Источники тока: идеальный (слева) и реальный (справа).

Закон Ома для полной цепи

В предыдущей статье я рассказал о законе Ома, который устанавливает зависимость между напряжением и током, протекающим через участок цепи. Однако при попытке его применить ко всей цепи, содержащей кроме сопротивления ещё и источник напряжения, приводит к неверным результатам, так как реальный источник напряжения, как мы знаем, имеет некоторое внутреннее сопротивление.


Закон Ома для полной цепи.

Поэтому полное сопротивление цепи является суммой внутреннего сопротивления источника энергии RВН (обычно небольшого) и внешнего сопротивления нагрузки RН (практически всегда значительно большего, чем RВН), поэтому для полной цепи закон Ома будет иметь следующий вид

Проанализировав данное выражение можно прийти к следующим практически выводам:

При подключении к источнику питания нагрузки, напряжение источника питания меньше его ЭДС, так как на внутреннем сопротивлении RВН источника питания происходит падение некоторого напряжения UВН

Следовательно, при отключенной нагрузке напряжение источника питания будет равно ЭДС. Данное приложение используется для измерения ЭДС источников питания.

Напряжение источника питания при подключении различных нагрузок изменяется, причем, чем меньше величина сопротивления нагрузки, тем меньше величина напряжения источника питания, так как разная величина сопротивления нагрузки вызывает разный ток в цепи, а следовательно изменяется падение напряжение на внутреннем сопротивлении источника

  • В некоторых случаях возникает необходимость в измерении внутреннего сопротивления источника энергии. Это возможно сделать с помощью следующей схемы

  • Схема для измерения источника энергии.

    В начале проводят замер ЭДС источника питания Е, путём размыкая ключа S1, затем замыкая ключ S1 замеряют протекающий по цепи ток I и напряжение источника питания под нагрузкой UH. Таким образом, вычисляют падение напряжения на внутреннем сопротивлении источника питания UВН. Тогда, величина внутреннего сопротивления RВН будет вычислена, как отношение внутреннего падения напряжения к протекающему в цепи току

    Например, при разомкнутом ключе S1 напряжение на выходе источника питания составило U = E = 1,5 В. При замыкании ключа S1 ток составил I = 0,18 А, а напряжение составило UH = 1,42 В. Тогда внутренне сопротивление RВН источника питания составит

    КПД источника энергии

    Кроме внутреннего сопротивления RВН и ЭДС Е источник энергии характеризуется также коэффициентом полезного действия КПД при работе на конкретную нагрузку RН.

    Коэффициентом полезного действия КПД источника энергии называется отношение мощности приёмника энергии (мощности нагрузки) или полезной мощности РН к мощности источника энергии Р. Как известно мощность выражается произведением напряжения на ток протекающий через источник энергии, то есть по отношению к источнику энергии это будет

    где PBH – мощность потерь внутри источника энергии.

    Таким образом, КПД будет равен

    Из вышесказанного возникает резонный вопрос, при каком КПД в нагрузку отдается наибольшая мощность? Можно было бы предположить, что максимальная мощность в нагрузку поступает при КПД η = 1 или 100 %, однако в этом случае напряжение U на источнике питания равняется ЭДС Е, то есть ток в цепи равен нулю I = 0, а значит и мощность на нагрузке также равна нулю Р = 0

    Данный режим называется режимом холостого хода.

    Другой случай, когда КПД η = 0, в этом случае ток имеет максимальное значение и фактически ограничен лишь внутренним сопротивлением источника питания I = E/RBH. Следовательно, напряжение нагрузки равно нулю UH = 0 и мощность в нагрузке также нулевая Р = 0

    Данный режим называется режимом короткого замыкания.

    Не вдаваясь в длинные расчёты сказу сразу, что максимальная мощность на нагрузке выделяется при КПД η = 0,5 или 50 %, в этом случае напряжение на нагрузке равно падению напряжения на внутреннем сопротивлении источника питания UH = UBH, то есть сопротивление нагрузки равно внутреннему сопротивлению источника питания.

    Данный режим называется режимом согласованной нагрузки.

    В данном режиме работает большинство слаботочных устройств автоматики, телемеханики и электросвязи, где низкий КПД не влечёт значительных потерь энергии. Однако в мощных устройствах стараются проектировать устройства так чтобы КПД η = 0,95…0,98.

    Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

    Коэффициент полезного действия (КПД)

    О чем эта статья:

    КПД: понятие коэффициента полезного действия

    Представьте, что вы пришли на работу в офис, выпили кофе, поболтали с коллегами, посмотрели в окно, пообедали, еще посмотрели в окно — вот и день прошел. Если вы не сделали ни одного дела по работе, то можно считать, что ваш коэффициент полезного действия равен нулю.

    В обратной ситуации, когда вы сделали все запланированное — КПД равен 100%.

    По сути, КПД — это процент полезной работы от работы затраченной.

    Вычисляется по формуле:

    Формула КПД

    η = (Aполезная/Aзатраченная) * 100%

    η — коэффициент полезного действия [%]

    Aполезная — полезная работа [Дж]

    Aзатраченная — затраченная работа [Дж]

    Есть такое философское эссе Альбера Камю «Миф о Сизифе». Оно основано на легенде о неком Сизифе, который был наказан за обман. Его приговорили после смерти вечно таскать огромный булыжник вверх на гору, откуда этот булыжник скатывался, после чего Сизиф тащил его обратно в гору. То есть он делал совершенно бесполезное дело с нулевым КПД. Есть даже выражение «Сизифов труд», которое описывает какое-либо бесполезное действие.

    Давайте пофантазируем и представим, что Сизифа помиловали и камень с горы не скатился. Тогда, во-первых, Камю бы не написал об этом эссе, потому что никакого бесполезного труда не было. А во-вторых, КПД в таком случае был бы не нулевым.

    Полезная работа в этом случае равна приобретенной булыжником потенциальной энергии. Потенциальная энергия прямо пропорционально зависит от высоты: чем выше расположено тело, тем больше его потенциальная энергия. То есть, чем выше Сизиф прикатил камень, тем больше потенциальная энергия, а значит и полезная работа.

    Потенциальная энергия

    Еп = mg

    Еп — потенциальная энергия [Дж]

    m — масса тела [кг]

    g — ускорение свободного падения [м/с^2]

    На планете Земля g ≃ 9,8 м/с^2

    Затраченная работа здесь — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.

    Механическая работа

    А = FS

    A — механическая работа [Дж]

    F — приложенная сила [Н]

    И как же достоверно определить, какая работа полезная, а какая затраченная?

    Все очень просто! Задаем два вопроса:

    1. За счет чего происходит процесс?
    2. Ради какого результата?

    В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы). Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.

    КПД в механике

    Главный секрет заключается в том, что эта формула подойдет для всех видов КПД.

    КПД

    η = (Aполезная/Aзатраченная) * 100%

    η — коэффициент полезного действия [%]

    Aполезная — полезная работа [Дж]

    Aзатраченная — затраченная работа [Дж]

    Дальше мы просто заменяем полезную и затраченную работы на те величины, которые ими являются.

    Давайте разберемся на примере задачи.

    Задача

    Чтобы вкатить санки массой 4 кг в горку длиной 12 метров, мальчик приложил силу в 15 Н. Высота горки равна 2 м. Найти КПД этого процесса. Ускорение свободного падения принять равным g ≃9,8 м/с^2

    Запишем формулу КПД.

    η = (Aполезная/Aзатраченная) * 100%

    Теперь задаем два главных вопроса:

    Ради чего все это затеяли?

    Чтобы санки в горку поднять — то есть ради приобретения телом потенциальной энергии. Значит в данном процессе полезная работа равна потенциальной энергии санок.

    Потенциальная энергия

    Еп = mgh

    Еп — потенциальная энергия [Дж]

    m — масса тела [кг]

    g — ускорение свободного падения [м/с^2]

    На планете Земля g ≃9,8 м/с^2

    За счет чего процесс происходит?

    За счет мальчика, он же тянет санки. Значит затраченная работа равна механической работе

    Механическая работа

    А = FS

    A — механическая работа [Дж]

    F — приложенная сила [Н]

    Заменим формуле КПД полезную работу на потенциальную энергию, а затраченную — на механическую работу:

    η = Eп/A * 100% = mgh/FS * 100%

    η = 4*9,8*2/15*12 * 100% = 78,4/180 * 100% ≃ 43,6 %

    Ответ: КПД процесса приблизительно равен 43,6 %

    КПД в термодинамике

    В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

    • Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

    Схема теплового двигателя выглядит так:

    У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

    • Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

    Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

    КПД такой тепловой машины будет равен:

    КПД тепловой машины

    η = (Aполезная/Qнагревателя) * 100%

    η — коэффициент полезного действия [%]

    Aполезная — полезная работа (механическая) [Дж]

    Qнагревателя — количество теплоты, полученное от нагревателя[Дж]

    Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

    A = Qнагревателя — Qхолодильника.

    Подставим в числитель и получим такой вариант формулы.

    КПД тепловой машины

    η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

    η — коэффициент полезного действия [%]

    Qнагревателя — количество теплоты, полученное от нагревателя[Дж]

    Qхолодильника — количество теплоты, отданное холодильнику [Дж]

    А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

    Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

    Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

    Запишем его, чтобы не забыть:

    Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

    Задача

    Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

    Решение:

    Возьмем формулу для расчета КПД:

    η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

    η = 20 — 10/20 *100% = 50%

    Ответ: КПД тепловой машины равен 50%

    Идеальная тепловая машина: цикл Карно

    Давайте еще чуть-чуть пофантазируем: какая она — идеальная тепловая машина. Кажется, что это та, у которой КПД равен 100%.

    На самом деле понятие «идеальная тепловая машина» уже существует. Это тепловая машина, у которой в качестве рабочего тела взят идеальный газ. Такая тепловая машина работает по циклу Карно. Зависимость давления от объема в этом цикле выглядит следующим образом

    А КПД для цикла Карно можно найти через температуры нагревателя и холодильника.

    КПД цикла Карно

    η = Tнагревателя — Tхолодильника /Tнагревателя *100%

    η — коэффициент полезного действия [%]

    Tнагревателя — температура нагревателя[Дж]

    Tхолодильника — температура холодильника [Дж]

    КПД в электродинамике

    Мы каждый день пользуемся различными электронными устройствами: от чайника до смартфона, от компьютера до робота-пылесоса — и у каждого устройства можно определить, насколько оно эффективно выполняет задачу, для которой оно предназначено, просто посчитав КПД.

    КПД

    η = Aполезная/Aзатраченная *100%

    η — коэффициент полезного действия [%]

    Aполезная — полезная работа [Дж]

    Aзатраченная — затраченная работа [Дж]

    Для электрических цепей тоже есть нюансы. Давайте разбираться на примере задачи.

    Задачка, чтобы разобраться

    Найти КПД электрического чайника, если вода в нем приобрела 22176 Дж тепла за 2 минуты, напряжение в сети — 220 В, а сила тока в чайнике 1,4 А.

    Решение:

    Цель электрического чайника — вскипятить воду. То есть его полезная работа — это количество теплоты, которое пошло на нагревание воды. Оно нам известно, но формулу вспомнить все равно полезно

    Количество теплоты, затраченное на нагревание

    Q — количество теплоты [Дж]

    c — удельная теплоемкость вещества [Дж/кг*˚C]

    tконечная — конечная температура [˚C]

    tначальная — начальная температура [˚C]

    Работает чайник, потому что в розетку подключен. Затраченная работа в данном случае — это работа электрического тока.

    Работа электрического тока

    A = (I^2)*Rt = (U^2)/R *t = UIt

    A — работа электрического тока [Дж]

    U — напряжение [В]

    R — сопротивление [Ом]

    То есть в данном случае формула КПД будет иметь вид:

    η = Q/A *100% = Q/UIt *100%

    Переводим минуты в секунды — 2 минуты = 120 секунд. Теперь намм известны все значения, поэтому подставим их:

    η = 22176/220*1,4*120 *100% = 60%

    Ответ: КПД чайника равен 60%.

    Давайте выведем еще одну формулу для КПД, которая часто пригождается для электрических цепей, но применима ко всему. Для этого нужна формула работы через мощность:

    Работа электрического тока

    A — работа электрического тока [Дж]

    Подставим эту формулу в числитель и в знаменатель, учитывая, что мощность разная — полезная и затраченная. Поскольку мы всегда говорим об одном процессе, то есть полезная и затраченная работа ограничены одним и тем же промежутком времени, можно сократить время и получить формулу КПД через мощность.

    КПД

    η = Pполезная/Pзатраченная *100%

    η — коэффициент полезного действия [%]

    Pполезная — полезная мощность [Дж]

    Pзатраченная — затраченная мощность [Дж]

    Для любых предложений по сайту: [email protected]