Как найти напряжение в физике?

Формула напряжения в физике — это представление электрической потенциальной энергии на единицу заряда. Если ток был размещен в определенном месте,
Содержание
  1. Как найти напряжение в физике?
  2. Физика: формула напряжения тока. Как найти и вычислить электрическое напряжение?
  3. Единицы измерения в формуле
  4. Как работает закон в реальной жизни
  5. Пример с обычной водой
  6. По какой формуле определяется напряжение
  7. Различные используемые величины
  8. Как найти напряжение, формула. Потенциал электрического поля
  9. Определение через разложение электрического поля
  10. Еще один способ
  11. Гидравлическая аналогия
  12. Измерительные приборы
  13. Типичные напряжения
  14. Потенциал Гальвани
  15. Формула напряжения тока. Как найти, вычислить электрическое напряжение, разность потенциалов.
  16. Сопротивление
  17. Еще один способ
  18. Взаимосвязь параметров электрической цепи
  19. Основные понятия
  20. Сила и напряжение
  21. Сопротивление проводников
  22. Как работает закон в реальной жизни
  23. Как найти напряжение в физике?
  24. Амперметр
  25. Напряжение
  26. Вольтметр
  27. Формулы и определения.
  28. Что такое напряжение простыми словами
  29. Электрическое напряжение
  30. Разность потенциалов
  31. Что такое ЭДС
  32. Измерение напряжения на различных участках электрической цепи.
  33. Подводим ИТОГИ:
  34. Зависимость тока от напряжения
  35. Как померить напряжение мультиметром
  36. Что такое напряжение
  37. Напряжение с точки зрения гидравлики
  38. Электрическое напряжение
  39. Формула напряжения
  40. Напряжение тока – что это означает?
  41. Постоянное и переменное напряжение
  42. Осциллограммы постоянного и переменного напряжения

Как найти напряжение в физике?

Физика: формула напряжения тока. Как найти и вычислить электрическое напряжение?

Формула напряжения в физике — это представление электрической потенциальной энергии на единицу заряда. Если ток был размещен в определенном месте, напряжение указывает на ее потенциальную энергию в этой точке. Другими словами, это измерение силы, содержащейся в электрическом поле или цепи в данной точке. Он равен работе, которую нужно было бы выполнить за единицу заряда против электрического поля, чтобы переместить его из одной точки в другую.

Напряжение является скалярной величиной, у него нет направления. Закон Ома гласит, что интенсивность равна текущему временному сопротивлению.

Единицы измерения в формуле

Вам будет интересно: Антиклиналь + синклиналь – это складчатые горы

В формуле, определяющей напряжение, значением СИ является вольт. Таким образом, что 1В = 1 джоуль/кулон. Вольт назван в честь итальянского физика Алессандро Вольта, который изобрел химическую батарею.

Это означает, что в формуле напряжения в физике один кулон заряда получит один джоуль потенциальной энергии, когда он будет перемещен между двумя точками, где разность электрических потенциалов составляет один вольт. При напряжении 12, один кулон заряда получит 12 джоулей потенциальной энергии.

Батарея на шесть вольт имеет потенциал для одного кулона заряда, чтобы получить шесть джоулей потенциальной энергии между двумя местоположениями. Батарея на девять вольт имеет потенциал для одного кулона заряда, чтобы получить девять джоулей потенциальной энергии.

Как работает закон в реальной жизни

Формулу напряжения в физике иногда очень сложно понять. Более конкретным примером из реальной жизни является резервуар для воды со шлангом, идущим снизу. Жидкость представляет собой накопленный заряд. Требуется работа, чтобы наполнить бак водой. Это создает запас жидкости. Как разделение заряда в батарее. Чем больше ее в резервуаре, тем сильнее давление — и вода может выходить через шланг с большей энергией. Если бы в аквариуме было меньше жидкости, она вышла бы с минимальным количеством интенсивности.

Пример с обычной водой

Этот потенциал давления эквивалентен напряжению. Чем больше воды в баке, тем сильнее воздействие. Чем мощнее заряд хранится в батарее, тем выше напряжение.

Когда открываешь шланг, течет поток воды. Давление в резервуаре определяет, насколько быстро он вытекает. Электрический ток измеряется в амперах. Чем больше вольт, тем сильнее А тока. Значит, чем сильнее давление воды, тем быстрее она вытечет из бака.

Тем не менее ток также зависит от сопротивления. В случае шланга — это его ширина. Широкая труба позволяет пропускать больше воды за меньшее время, а узкая — противостоит потоку жидкости. С электрическим током также может быть сопротивление, измеренное в Омах.

По какой формуле определяется напряжение

Вам будет интересно: Ликвидация гетманства на Украине: история и интересные факты

Закон Ома гласит, что U равно текущему временному сопротивлению.

Если это 12-вольтовая батарея, то ее значение составляет два Ом, а ток составит шесть ампер. Если сопротивление было одним Ом, ток был бы 12 ампер.

Формула напряжения в физике гласит, что интенсивность, разница электрического потенциала и давления — это различие между двумя точками. Отличие в данном случае между двумя объектами (т. е. их напряжением) в статическом электрическом поле определяется как работа, необходимая на единицу заряда для перемещения испытательного резерва между точками. В Международной системе единиц полученный блок называется напряжением.

Различные используемые величины

В СИ работа выражается в джоулях на кулон, где 1 вольт = 1 джоуль за 1 кулон. Официальное определение СИ для вольта использует мощность и ток, где 1 вольт = 1 ватт (мощности) на 1 ампер (тока). Это определение эквивалентно более часто используемому «джоулю на кулон». Напряжение или разность электрических потенциалов обозначается символически DV, но чаще просто как V, например, в контексте Ома или Правилах Кирхгофа.

Различия электрического потенциала между точками могут быть вызваны зарядом, током через магнитное поле или некоторой комбинацией этих трех составляющих.

Вольтметр может быть использован для измерения напряжения (или разности потенциалов) между двумя точками в системе; часто в качестве одного объекта используется общий опорный потенциал, такой как заземление системы. Напряжение может представлять собой либо источник энергии (электродвижущая сила) либо потерянную, использованную или накопленную (падение потенциала) энергию.

Существует несколько полезных способов узнать какая формула напряжения в конкретном случае необходима.

Грубо говоря, сила определяется так, что отрицательно заряженные объекты притягиваются к более высоким напряжениям, а положительно — к более низким. Поэтому обычный ток в проводе или резисторе всегда течет от меньшего к большему.

Исторически формула закона напряжения упоминалась с использованием такого термина, как давление. Даже сегодня «натяжение» все еще применяется в таком контексте, например, в термине «высокое напряжение», которое обычно употребляется в электронике на основе термоэлектронных клапанов (вакуумных трубок).

Как найти напряжение, формула. Потенциал электрического поля

Вам будет интересно: Что такое щелочь, в какие реакции вступают самые известные из них

Увеличение напряжения с некоторой точки xA в какой-то момент xB дан кем-то.

В этой формуле для вычисления напряжения увеличение от точки A до B равно работе, которую нужно было бы выполнить за единицу заряда, против электрического поля, чтобы переместить частицу с A на B, не вызывая какого-либо ускорения. Математически это выражается как криволинейный интеграл от электрического поля вдоль этого пути. Согласно данному определению, разность напряжений между двумя точками не формируется однозначно, когда существуют изменяющиеся во времени магнитные поля, поскольку электрическая сила не является консервативной в таких случаях.

Если используется это определение напряжения, любая цепь, в которой существуют изменяющиеся во времени магнитные поля, например, ряды, содержащие индукторы, не будет иметь четко определенного напряжения между узлами в цепи. Однако если магнитные поля надлежащим образом содержатся в каждом компоненте, то электрическое является консервативным во внешней области, и составляющие хорошо определены в ней. В этом случае напряжение на индукторе, если смотреть со стороны, оказывается.

Несмотря на то, что внутреннее электрическое поле в катушке равно нулю (при условии, что это идеальный проводник). Существует еще несколько способов, чтобы узнать, какая формула напряжения необходима в конкретном случае.

Определение через разложение электрического поля

Используя приведенное выше понятие, потенциал не находится на одном месте, когда магнитные поля меняются со временем. В физике иногда полезно обобщать электрическое значение, рассматривая только консервативную часть поля. Это делается с помощью следующего разложения, используемого в электродинамике.

В показанной выше формуле Е — индуцированный — вращательное электрическое поле, обусловленное изменяющимися во времени магнитными фонами. В этом случае сила между точками всегда определяется однозначно.

Еще один способ

Разберем формулу механического напряжения в физике, теории цепей.

В схемотехническом анализе и электротехнике сила на катушке индуктивности не считается нулевым или неопределенным, как предполагает стандартное определение. Это связано с тем, что инженеры-электрики используют модель с сосредоточенными элементами для представления и анализа цепей.

При этом предполагается, что в области окружающего ряда нет магнитных полей, и их влияние содержится в «сосредоточенных элементах», которые являются идеализированными и автономными составляющими схемы, используемыми для моделирования физических компонентов. Если предположение о незначительных утечках полей является слишком неточным, их эффекты могут быть смоделированы паразитными компонентами.

Однако в случае физического индуктора идеальное представление с сосредоточенными параметрами часто является точным. Это связано с тем, что поля утечки в индуктивности, как правило, незначительны, особенно если заряд представляет собой тороид. Если протекшие поля небольшие, можно найти, что является независимым от пути, и на клеммах индуктора имеется четко определенное напряжение. Это причина того, что измерения с помощью вольтметра на катушке часто в достаточной степени не зависят от расположения измерительных проводов.

Гидравлическая аналогия

Простая параллель для электрического контура в формуле изменения напряжения — вода, протекающая по замкнутому трубопроводу, приводимая в действие механическим насосом. Это можно назвать «водным контуром». Разность потенциалов между двумя точками соответствует отличием давлений между ними. Если насос создает перепад напора, то вода, текущая из одной колбы в другую, сможет выполнять работу, например, приводить турбину в движение. Точно так же работа может выполняться электрическим током, управляемым разностью потенциалов, обеспечиваемой батареей. Например, напряжение, которое достаточно заряжено автомобильным аккумулятором, может «проталкивать» большой ток через обмотки стартерного двигателя. Если насос не работает, он не создает разности давлений, и турбина не вращается. Аналогично если аккумуляторная батарея машины очень слаба или разряжена, то она не будет вращать стартер.

Гидравлическая аналогия является полезным способом понимания многих электрических концепций. В такой системе напряжение вычисляется по формуле давления, умноженного на объем перемещаемого заряда. В электрической цепи работа, выполняемая для передвижения частиц или других носителей, равна «электрическому давлению», умноженному на количество перемещенных электрочастиц. Чем больше перепад давления между двумя точками в отношении потока (разность потенциалов или перепад давления воды), тем больше расстояние между ними (электрический ток или поток воды).

Измерительные приборы

Инструментарий для определения напряжения включает в себя вольтметр, потенциометр и осциллограф. Первый работает путем измерения тока через фиксированный резистор, который, согласно закону Ома, пропорционален напряжению. Потенциометр работает путем балансировки неизвестного напряжения с известным в мостовой цепи. Катодно-лучевой осциллограф вычисляет, усиливая U и используя его для отклонения электронного луча от прямой траектории.

Типичные напряжения

Вам будет интересно: Где находится Рейкьявик: страна, координаты, описание

Общий поток для батарей фонарика составляет 1,5 V. А совместное напряжение для автомобильных аккумуляторов — 12 вольт.

Общая сила, поставляемая большими энергокомпаниями потребителю, составляет от 110 до 120 вольт и от 220 до 240 вольт. Напряжения в передаче энергии, используемые для распределения всего тока от электростанций, может быть в несколько сотен раз больше, чем любые потребительские напряжения, как правило, от 110 до 1200 кВ (переменного тока).

Сила, которая используется в воздушных линиях для питания всех железнодорожных локомотивов, составляет от 12 кВ до 50 кВ (переменного тока) или от 1,5 кВ до 3 кВ (постоянного тока).

Потенциал Гальвани

Внутри проводящего материала на энергию электрона влияют не только средние возможности, но и конкретная тепловая и атомная среда, в которой он находится. Когда вольтметр подключен между двумя различными типами металла, он не измеряет разность электростатического потенциала.

Величина, измеренная с помощью вольтметра, является отрицательной и обычно называется разностью напряжений. В то время как чистая нескорректированная электростатическая возможность (неизмеряемая с помощью вольтметра) иногда называется Гальванической. Термины «напряжение» и «электрический потенциал» неоднозначны в том смысле, что на практике они могут относиться к любому из них в различных контекстах.

Формула напряжения тока. Как найти, вычислить электрическое напряжение, разность потенциалов.

Наверное, каждый кто делал или делает ремонт электрики сталкивался с проблемой определения той или иной электрической величины. Для кого-то это становится настоящим камнем преткновения, а для кого-то все предельно ясно и каких-либо сложностей при определении той или иной величины нет. Данная статья посвящена именно первой категории – то есть для тех, кто не очень силен в теории электрических цепей и тех показателей, которые для них характерны.

Итак, для начала вернемся немного в прошлое и постараемся вспомнить школьный курс физики, касательно электрики. Как мы помним, основные электрические величины определяются на основании всего одного закона – закона Ома. Именно этот закон является базой проведения абсолютно для любых расчетов и имеет вид:

Отметим, что в данном случае речь идет о расчете самой простейшей электрической цепи, которая выглядит следующим образом:

Подчеркнем, что абсолютно любой расчет ведется именно посредством этой формулы. То есть путем не сложных математических вычислений можно определить ту или иную величину зная при этом два иных электрических параметра. Как бы там ни было, наш ресурс призван упростить жизнь тому кто делает ремонт, а поэтому мы упростим решение задачи определения электрических параметров, вывив основные формулы и предоставив возможность произвести расчет электрических цепей онлайн.

Сопротивление

Формула механической мощности — средняя и мгновенная мощность

Любой проводник в цепи препятствует прохождению через себя тока. Данная характеристика определяет такую физическую величину, как сопротивление. Исходя из величины сопротивления, все вещества относят к проводникам или изоляторам. Точная граница весьма расплывчата, поэтому при некоторых условиях некоторые вещества можно отнести как к изоляторам, так и к проводникам. Участок электросхемы может иметь элемент с определенным значением величины, который именуется резистор.


Резисторы различных типов

Еще один способ

Разберем формулу механического напряжения в физике, теории цепей.

В схемотехническом анализе и электротехнике сила на катушке индуктивности не считается нулевым или неопределенным, как предполагает стандартное определение. Это связано с тем, что инженеры-электрики используют модель с сосредоточенными элементами для представления и анализа цепей.

При этом предполагается, что в области окружающего ряда нет магнитных полей, и их влияние содержится в «сосредоточенных элементах», которые являются идеализированными и автономными составляющими схемы, используемыми для моделирования физических компонентов. Если предположение о незначительных утечках полей является слишком неточным, их эффекты могут быть смоделированы паразитными компонентами.

Однако в случае физического индуктора идеальное представление с сосредоточенными параметрами часто является точным. Это связано с тем, что поля утечки в индуктивности, как правило, незначительны, особенно если заряд представляет собой тороид. Если протекшие поля небольшие, можно найти, что является независимым от пути, и на клеммах индуктора имеется четко определенное напряжение. Это причина того, что измерения с помощью вольтметра на катушке часто в достаточной степени не зависят от расположения измерительных проводов.

Взаимосвязь параметров электрической цепи

Все параметры любой электрической цепи строго взаимосвязаны, поэтому в любой момент времени можно точно определить величину любого из них, зная остальные.

К сведению. Основополагающий закон, по которому производится большинство расчетов, – закон Ома, согласно которому сила тока обратно пропорциональна его сопротивлению и прямо пропорциональна приложенной разности потенциалов.


Закон Ома и его основатель

Формула напряжения тока закона Ома выглядит следующим образом:

Так, цепь с большим напряжением пропускает больший ток, а при одинаковом напряжении ампераж будет больше там, где меньше сопротивление.

Принятые обозначения в формуле расчета напряжения и тока понятны во всем мире:

  • I – сила тока;
  • U – напряжение;
  • R – сопротивление.

Путем простейшего математического преобразования находится формула расчета сопротивления через силу тока и напряжение.

Кроме закона Ома, используется формула расчета мощности:

Символом P здесь обозначена мощность тока.

Любая схема может содержать участки, где имеется последовательное соединение, или есть элемент, подключенный параллельно. Расчеты при этом усложняются, но базовые формулы остаются одинаковыми.

Основные понятия

Электрический ток течёт, когда замкнутый контур позволяет электронам перемещаться от высокого потенциала к более низкому в цепи. Иначе говоря, ток требует источника электронов, обладающего энергией для приведения их в движение, а также точки их возвращения отрицательных зарядов, для которой характерен их дефицит. Как физическое явление ток в цепи характеризуется тремя фундаментальными величинами:

  • напряжение;
  • сила тока;
  • сопротивление проводника, по которому движутся электроны.

Сила и напряжение

Сила тока (I, измеряется в Амперах) есть объём электронов (заряд), перемещающихся через место в цепи за единицу времени. Иными словами, измерение I — это определение количества электронов, находящихся в движении

Важно понимать, что термин относится только к движению: статические заряды, например, на клеммах неподсоединённой батареи, не имеют измеряемого значения I. Ток, который протекает в одном направлении, называется постоянным (DC), а периодически изменяющий направление — переменным (AC)

Напряжение можно проиллюстрировать таким явлением, как давление, или как разность потенциальной энергии предметов под воздействием гравитации. Для того чтобы создать этот дисбаланс, нужно затратить предварительно энергию, которая и будет реализована в движении при соответствующих обстоятельствах. Например, в падении груза с высоты реализуется работа по его подъёму, в гальванических батареях разность потенциалов на клеммах образуется за счёт преобразования химической энергии, в генераторах — в результате воздействия электромагнитного поля.

Сопротивление проводников

Независимо от того, насколько хорош обычный проводник, он никогда не будет пропускать сквозь себя электроны без какого-либо сопротивления их движению. Можно рассматривать сопротивление как аналог механического трения, хотя это сравнение не будет совершенным. Когда ток протекает через проводник, некоторая разность потенциалов преобразуется в тепло, поэтому всегда будет падение напряжения на резисторе. Электрические обогреватели, фены и другие подобные устройства предназначены исключительно для рассеивания электрической энергии в виде тепла.

Упрощённо сопротивление (обозначается как R) является мерой того, насколько поток электронов тормозится в цепи. Оно измеряется в Омах. Проводимость резистора или другого элемента определяется двумя свойствами:

  • геометрией;
  • материалом.

Форма имеет важнейшее значение, это очевидно на гидравлической аналогии: протолкнуть воду через длинную и узкую трубу гораздо тяжелее, чем через короткую и широкую. Материалы играют определяющую роль. Например, электроны могут свободно перемещаться в медном проводе, но не способны протекать вообще через такие изоляторы, как каучук, независимо от их формы. Кроме геометрии и материала, существуют и другие факторы, влияющие на проводимость.

Как работает закон в реальной жизни

Используя совместно формулу расчета мощности и закон Ома, можно производить вычисления, не зная одной из величин. Самый простой пример – для лампы накаливания известны только ее мощность и напряжение. Применяя приведенные выше формулы, можно легко определить параметры нити накаливания и ток через нее.


Лампа накаливания

Как найти напряжение в физике?

Характеристикой тока в цепи служит величина, называемая силой тока ( I ). Сила тока – физическая величина, характеризующая скорость прохождения заряда через проводник и равная отношению заряда q, прошедшeгo через пoперeчное сечение проводника за промежуток времени t, к этому промежутку времени: I = q/t . Единица измерения силы тока – 1 ампер (1 А).

Определение единицы силы тока основано на магнитном действии тока, в частности на взаимодействии параллельных проводников, по которым идёт электрический ток. Такие проводники притягиваются, если ток по ним идёт в одном направлении, и отталкиваются, если направление тока в них противоположное.

За единицу силы тока принимают такую силу тока, при которой отрезки параллельных проводников длиной 1 м, находящиеся на расстоянии 1 м друг от друга, взаимодействуют с силой 2*10 -7 Н. Эта единица и называется ампером (1 А).

Зная формулу силы тока, можно получить единицу электрического заряда: 1 Кл = 1А * 1с.

Амперметр

Прибор, с помощью которого измеряют силу тока в цепи, называется амперметром. Его работа основана на магнитном действии тока. Основные части амперметра магнит и катушка. При прохождении по катушке электрического тока она в результате взаимодействия с магнитом, поворачивается и поворачивает соединённую с ней стрелку. Чем больше сила тока, проходящего через катушку, тем сильнее она взаимодействует с магнитом, тем больше угол поворота стрелки. Амперметр включается в цепь последовательно с тем прибором, силу тока в котором нужно измерить, и потому он имеет малое внутреннее сопротивление, которое практически не влияет на сопротивление цепи и на силу тока в цепи.

У клемм амперметра стоят знаки «+» и «—», при включении амперметра в цепь клемма со знаком «+» присоединяется к положительному пoлюсу источника тока, а клемма со знаком «—» к отрицательному пoлюсу истoчникa тока.

Напряжение

Источник тока создаёт электрическое поле, которое приводит в движение электрические заряды. Характеристикой источника тока служит величина, называемая напряжением. Чем оно больше, тем сильнее созданное им поле. Напряжение характеризует работу, которую совершает электрическое поле по перемещению электрического заряда.

Напряжение ( U ) — это физическая величина, равную отношению работы (А) электрического поля по перемещению электрического заряда к заряду (q): U = A/q .

Возможно другое определение понятия напряжения. Если числитель и знаменатель в формуле напряжения умножить на время движения заряда (t), то получим: U = At/qt. В числителе этой дроби стоит мощность тока (Р), а в знаменателе — сила тока (I). Получается формула: U = Р/I , т.е. напряжение — это физическая величина, равная отношению мощности электрического тока к силе тока в цепи.

Единица напряжения: [U] = 1 Дж/1 Кл = 1 В (один вольт).

Вольтметр

Напряжение измеряют вольтметром. Он имеет такое же устройство, что и амперметр и такой же принцип действия, но он подключается параллельно тому участку цепи, напряжение на котором хотят. Внутреннее сопротивление вольтметра достаточно большое, соответственно проходящий через него ток мал по сравнению с током в цепи.

У клемм вольтметра стоят знаки «+» и «—», при включении вольтметра в цепь клeмма со знаком «+» присоединяется к положительному полюсу источника тока, а клеммa со знаком «—» к отрицательному полюсу источника тока.

Формулы и определения.

1. Все проводники, используемые в электрических цепях, имеют условные обозначения для изображения на схемах и могут образовывать последовательные, параллельные и смешанные соединения.

2. Мощность тока – физическая величинa, хаpактеpизующая скорость превращения электрической энергии в другие её виды. Единица для измерения – 1 ватт (1 Вт). Измерительный прибор – ваттметр.

3. Сила тока – физическaя вeличина, характеpизующaя скоpость прохождения заряда через проводник и равная отношению заряда, пpoшедшего через попеpeчное сечение проводника, ко времени перемещения. Единица – 1 ампер (1 А). Измерительный прибор – амперметр (подключают последовательно).

4. Электрическое напряжение – физическaя вeличина, характеризующая электрическое поле, создающее ток, и равная отношению мощности тока к его силе. Единица – 1 вольт (1 В). Измерительный прибор – вольтметр (подключают параллельно)

5. Работа тока – физичeская величинa, хаpактеpизующая количество электроэнергии, превратившейся в другие виды энергии. Единица – 1 джоуль (1 Дж). Измерительный прибор – электрический счётчик, использующий единицу 1 киловатт-час (1 кВт·ч).

Конспект урока «Сила тока. Напряжение».

Что такое напряжение простыми словами

  1. Электрическое напряжение
  2. Разность потенциалов
  3. Что такое ЭДС
  4. Измерение напряжения на различных участках электрической цепи.
  5. Подводим ИТОГИ:
  6. Зависимость тока от напряжения
  7. Как померить напряжение мультиметром

Электрическое напряжение

Что такое электрическое напряжение – это разность потенциалов между двумя точками электрического поля; это физическая величина, значение которой равно работе электрического поля по перемещению единичного заряда между двумя точками. Всем всё понятно? Думаю нет.

Сейчас я попытаюсь максимально легко рассказать, что такое электрическое напряжение. Надеюсь у меня получится! Итак, поехали…

Обратите внимание на рисунок

В одной бутылке уровень воды составляет 300 мм, в другой 150мм, разница воды в бутылках получается 150мм. В электричестве это называется разностью потенциалов, т.е разность потенциалов в наших бутылках равна 150 мм.

Разность потенциалов

А теперь давайте соединим эти бутылки между собой шлангом и поместим в шланг шарик, что будет?

Вода начнёт перетекать из бутылки, в которой уровень воды больше, в другую бутылку. И соответственно поток воды будет перемещать наш шарик по шлангу. Процесс перетекания воды прекратится тогда, когда уровень в бутылках станет одинаковым (принцип сообщающихся сосудов).

Когда уровень воды в бутылках стал одинаковым, разность потенциалов стала равна нулю, т.е. электродвижущая сила (ЭДС) равна нулю и наш шарик остаётся на месте.

Что такое ЭДС

Что такое ЭДС, думаете Вы? Сейчас расскажу!

Электродвижущая сила (ЭДС) тоже измеряется в Вольтах, как и напряжение.

Давайте возьмём прибор, который измеряет вольты (вольтметр), батарейку и произведём замер.

Прибор показывает 1,5 Вольта и это не напряжение, а электродвижущая сила (ЭДС).

А теперь подключим к батарейке лампочки.

Измерение напряжения на различных участках электрической цепи.

Заметили, что на одной лампочке напряжение (не ЭДС) составляет 1 Вольт, а на другой 0,3 вольта

Напряжение на лампочках зависит от их мощности.Мощность измеряется в Ваттах.

Мощность= Напряжение * ток (P=U*I)

Чем больше мощность лампочки, тем больше будет на ней напряжение.

Если батарейка у нас 1,5 вольта= 1 Вольт +0,3 Вольта= 1,3 Вольта, куда делись 0,2 Вольта? У батарейки есть тоже своё внутреннее сопротивление, вот туда они и ушли.

Подводим ИТОГИ:

Что такое электродвижущая сила (ЭДС)- это физическая величина, которая характеризует работу сторонних сил в источниках тока (батарейки, генераторы и т.д). ЭДС показывает нам работу источника тока по переносу заряду через всю цепь.

А напряжение показывает нам работу по переносу заряда на участке цепи.

Что такое напряжение простыми словами — это внешняя сила, которая перемещает наш с вами шарик в показанном примере выше.

А в электричестве — это сила, которая перемещает электроны от одного атома к другому.

Приведу ещё один пример, что такое электрическое напряжение :

Представьте, что вы можете поднять камень весом 50 кг, т.е Ваша подъёмная сила равна 50 кг (в электричестве это электродвижущая сила). Идетё вы и на пути у вас лежит камень массой 20 кг, вы берёте его и несёте 10 метров. Вы затратили определённую энергию по переносу этого камня (в электричестве это — напряжение). Следующий камень уже весит 40 кг и чтобы его перенести из одной точки в другую вы затратите больше энергии, чем затратили по переносу камня весом 20 кг. Подъёмная сила (в электричестве-это ЭДС) у Вас всегда одна, но в зависимости от веса камня вы всегда тратите разное количество энергии (в электричестве — это напряжение). Т.е. на каждом отрезке пути у Вас разное напряжение.

Надеюсь вы поняли, что такое электрическое напряжение!

Зависимость тока от напряжения

Давайте вспомним закон Ома

Все помнят, что такое ток, если нет, то прочтите вот эту статью http://svoedelo.net/chto-takoe-tok-prostymi-slovami.html

По формуле видно, что ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Т.е. чем больше ток, тем больше и напряжение и наоборот.

Как померить напряжение мультиметром

В этом видео я рассказываю как померить напряжение мультиметром в розетке.

Что такое напряжение

Что такое напряжение в электронике и электротехнике? Как его можно трактовать? Обо всем этом мы как раз и поговорим в нашей статье.

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

водобашня, заполненная водой

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил, давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Электрическое напряжение

Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком “минус”. Можно даже сказать, что уровень “воды в башне” у 12-вольтового автомобильного аккумулятора выше, чем уровень воды 1,5 Вольтовой пальчиковой батарейки.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

источник питания постоянного тока

Электрическое напряжение – это еще не значит, что в электрической цепи течет электрический ток. Для того, чтобы появился электрический ток, электроны должны двигаться в одном направлении, а они в данный момент тупо стоят на месте. А раз нет движения электронов, то и нет электрического тока.

С точки зрения электроники, на одном щупе блока питания есть давление, а на другом его нет. То есть это земля, на которой стоит башня, если провести аналогию с гидравликой. Поэтому, положительный щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп – черным или синим.

В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – ноль.

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Формула напряжения

В физике есть формула, хотя практического применения она не имеет. Официальная формула записывается так.

формула напряжения

A – это работа электрического поля по перемещению заряда по участку цепи, Джоули

U – напряжение на участке электрической цепи, Вольты

На практике напряжение на участке цепи выводится через закон Ома.

напряжение из закона Ома

Напряжение тока – что это означает?

Этот термин очень часто можно услышать в разговорной речи. Ток, в данном случае, это электрический ток. Получается, напряжение тока – это напряжение электрического тока. Просто у нас так сокращают. Как я уже говорил выше, ток бывает переменным и постоянным. Постоянный ток и постоянное напряжение – это синонимы, как и переменный ток и переменное напряжение. Получается фраза “напряжение тока” говорит нам о том, какое напряжение между двумя точками или проводами в электрической цепи.

Например, на вопрос “какое напряжение тока в розетке” вы можете смело ответить: переменный ток 220 Вольт”, а на вопрос “какое напряжение тока тока у автомобильного аккумулятора”, вы можете ответить “12 Вольт постоянного тока”. Так что не стоит пугаться).

Постоянное и переменное напряжение

Напряжение бывает бывает постоянным и переменным. В разговорной речи часто можно услышать “постоянный ток” и “переменный ток. Постоянный ток и постоянное напряжение – это синонимы, то же что и переменный ток и переменное напряжение.

На примере выше мы с вами рассмотрели постоянное напряжение. То есть давление воды на дно башни в течение времени постоянно. Пока в башне есть вода, она оказывает давление на дно башни. Вроде бы все элементарно и просто. Но какое же напряжение называют переменным?

Все любят качаться на качелях:

Сначала вы летите в одном направлении, потом происходит торможение, а потом уже летите обратно спиной и весь процесс снова повторяется. Переменное напряжение ведёт себя точно так же. Сначала “электрическое давление” давит в одну сторону, потом происходит процесс торможения, потом оно давит в другую сторону, снова происходит торможение и весь процесс снова повторяется, как на качелях.

Тяжко для понимания? Тогда вот вам еще один пример из знаменитой книжки “Первые шаги в электронике” Шишкова. Берем замкнутую систему труб с водой и поршень. Поршень у нас находится в движении. Следовательно, молекулы воды у нас отклоняются то в одну сторону:

Так же ведут себя и электроны. В вашей домашней сети 220 В они колеблются 50 раз в секунду. Туда-сюда, туда-сюда. Столько-то колебаний в секунду называется Герцем. В литературе пишется просто “Гц”. Тогда получается, что колебание напряжения в наших розетках 50 Гц, а в Америке 60 Гц. Это связано со скоростью вращения генератора на электростанциях. В разговорной речи постоянное напряжение называют “постоянкой”, а переменное – “переменкой”.

Осциллограммы постоянного и переменного напряжения

Давайте рассмотрим, как выглядит переменное и постоянное напряжение на экране осциллографа. Как вы знаете, осциллограф показывает изменение напряжения во времени. Если на щуп осциллографа не подавать никакое напряжение, то на осциллограмме мы увидим простую прямую линию на нулевом уровне по оси Y. Ось Y – это значение напряжения, а ось Х – это время.

осциллограмма нулевого напряжения

Давайте подадим постоянное напряжение. Как вы могли заметить, осциллограмма постоянного напряжения – это также прямая линия, параллельная оси времени. Это говорит нам о том, что с течением времени значение постоянного напряжение не меняется, о чем нам лишний раз доказывает осциллограмма.

осциллограмма постоянного напряжения

А вот так выглядит осциллограмма переменного напряжения. Как вы видите, напряжение со временем меняет свое значение. То оно больше нуля, то оно меньше нуля.

осциллограмма переменного напряжения

Про параметры переменного напряжения можете прочитать в этой статье.

Также отличное объяснение темы можно посмотреть в этом видео.