- Как подключить регулятор напряжения к тэну?
- Устройство и схемы подключения ТЭН
- 1. Устройство ТЭН.
- 2. Схемы включения ТЭН в однофазную сеть.
- 2.1. Включение в розетку.
- 2.2. Включение через автоматический выключатель.
- 2.3. Работа ТЭН в схемах регулирования температуры.
- Регулятор мощности для ТЭН не создающий помех
- Сообщества › Домашние Напитки › Блог › Тэн и регулятор напряжения.
- Комментарии 57
- Регулятор мощности до трёх киловатт
- Простой регулятор мощности 3,5 кВт
Как подключить регулятор напряжения к тэну?
Устройство и схемы подключения ТЭН
05 Дек 2017г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. Трубчатые электрические нагреватели (ТЭН) предназначены для преобразования электрической энергии в тепловую. Они применяются в качестве основы в нагревательных устройствах (приборах) промышленного и бытового назначения, осуществляющих нагрев различных сред путем конвекции, теплопроводности или излучения. Трубчатые нагреватели можно размещать непосредственно в нагреваемой среде, поэтому сфера их применения достаточно разнообразна: от утюгов и чайников до печей и реакторов.
1. Устройство ТЭН.
ТЭН представляет собой электрический нагревательный элемент, выполненный из тонкостенной металлической трубки (оболочки), материалом для которой служит медь, латунь, нержавеющая и углеродистая сталь. Внутри трубки расположена спираль из нихромовой проволоки, обладающая большим удельным электрическим сопротивлением. Концы спирали соединены с металлическими выводами, которыми нагреватель подключается к питающему напряжению.
От стенок трубки спираль изолирована спрессованным электроизоляционным наполнителем, который служит для отвода тепловой энергии от спирали и надежно фиксирует ее в центре трубки по всей длине. В качестве наполнителя используется плавленая окись магния, корунд или кварцевый песок. Для защиты наполнителя от проникновения влаги из окружающей среды торцы ТЭНа герметизируют термовлагостойким лаком.
Выводы нагревателя изолированы от стенок трубки и жестко зафиксированы керамическими изоляторами. Питающие провода подключаются к резьбовым концам выводов при помощи гаек и шайб.
Работает ТЭН следующим образом: при прохождении электрического тока по спирали она, нагреваясь, нагревает наполнитель и стенки трубки, через которые тепло излучается в окружающую среду.
При нагреве газообразных сред для увеличения теплоотдачи от ТЭНов применяют их оребрение, выполненное из материала с хорошей теплопроводностью. Как правило, для оребрения используют стальную гофрированную ленту, навитую по спирали на внешнюю оболочку ТЭНа.
Применение такого конструктивного решения способствует уменьшению габаритных размеров и токовой нагрузке нагревателя.
2. Схемы включения ТЭН в однофазную сеть.
Трубчатые электронагреватели рассчитаны на конкретное значение мощности и напряжения, поэтому для обеспечения номинального режима работы их подключают к питающей сети с соответствующим напряжением. Согласно ГОСТ 13268-88 нагреватели изготавливаются на номинальные напряжения: 12, 24, 36, 42, 48, 60, 127, 220, 380 В, однако наибольшее применение нашли ТЭНы рассчитанные на напряжение 127, 220 и 380 В.
Рассмотрим возможные варианты включения ТЭН в однофазную сеть.
2.1. Включение в розетку.
ТЭНы мощностью не более 1кВт (1000 Вт) можно смело включать в розетку через обычную штепсельную вилку, так как такой мощностью обладает основная масса электрических чайников и кипятильников, которыми мы разогреваем воду.
Через обычную вилку можно включить параллельно два ТЭН, но у обоих нагревателей мощность должна быть не более 1 кВт (1000 Вт), так как при параллельном соединении их общая мощность увеличивается до 2 кВт (2000 Вт). Таким образом, можно включить несколько нагревателей, но их общая мощность должна составлять не более 2 кВт, а для включения в розетку необходимо использовать более мощную вилку.
Бывает ситуация, когда дома завалялись несколько нагревателей, рассчитанных на рабочее напряжение 127 В, выкинуть их рука не поднимается, а в домашнюю сеть не включишь. В этом случае нагреватели включаются последовательно, что дает возможность подавать на них повышенное напряжение. При последовательном соединении двух нагревателей с напряжением 127 В их мощность остается прежней, а общее сопротивление увеличивается в два раза. Например, при включении двух нагревателей мощностью по 500 Вт их общая мощность составит 1000 Вт.
Однако в этой схеме есть один недостаток: если выйдет из строя любой из ТЭН, то работать не будут оба, так как разорвется электрическая цепь и прекратится подача питания.
Также надо помнить, что при последовательном соединении двух нагревателей с рабочим напряжением 220 В их общая мощность уменьшается в два раза, так как из-за увеличения общего сопротивления каждый нагреватель будет получать около 110 В вместо положенных 220 В.
2.2. Включение через автоматический выключатель.
Будет на много удобнее, если на ТЭНы подавать напряжение с помощью автоматического выключателя. Для этого необходимо в домовом щитке предусмотреть автомат, или же автомат установить непосредственно рядом с нагревательным устройством. Подача и отключение напряжения будет осуществляться включением/выключением автоматического выключателя.
Следующий вариант включения нагревателей осуществляется двухполюсным выключателем, что является наиболее предпочтительным, так как в этом случае фаза и ноль разрываются одновременно и ТЭН полностью отключается от общей схемы. Напряжение подается на верхние клеммы выключателя, а к нижним подключается нагреватель.
Если электрический нагреватель используется для нагрева воды и в доме проведено заземление, то для защиты от поражения электрическим током в случае пробоя изоляции нагревателя есть смысл установить УЗО или дифавтомат.
В этом случае заземляющий проводник соединяют с корпусом ТЭНа или подключают на специальный винт, закрепленный на корпусе емкости. Рядом с таким винтом изображают знак заземления. Рассмотрим схему с дифавтоматом:
Защита с дифавтоматом работает следующим образом: при пробое изоляции нагревателя на его корпусе появляется фаза, которая используя наименьшее сопротивление «пойдет» по заземляющему проводнику РЕ и создаст ток утечки. Если этот ток превысит уставку, то дифавтомат сработает и отключит подачу напряжения. Если в цепи произойдет короткое замыкание, то и в этом случае сработает дифавтомат и обесточит ТЭН.
При использовании УЗО между ним и нагревателем необходимо установить дополнительный однополюсный автомат, который в случае короткого замыкания отключит подачу напряжения на нагреватель и защитит УЗО от тока короткого замыкания. В случае пробоя изоляции УЗО отключит подачу напряжения.
2.3. Работа ТЭН в схемах регулирования температуры.
В схемах автоматического регулирования температуры питающее напряжение на электрические нагреватели подается через контакты пускателей, контакторов или термореле. В совокупности связка «нагреватель – термореле» или «нагреватель – термореле – контактор» представляет собой самый простой регулятор температуры, который может использоваться для поддержания температурного режима в помещениях или жидких средах. Контактор применяют в схеме для размножения контактов и для коммутации мощной нагрузки, на которую не рассчитаны контакты термореле.
Термореле может работать в режимах «Нагрев» или «Охлаждение», которые выбираются переключателем, расположенном на лицевой стороне реле. Работу ТЭН рассмотрим в режиме «Нагрев», так как именно этот режим используется наиболее часто.
Рассмотрим схему «нагреватель — термореле».
Питающее напряжение 220 В подается на входные клеммы двухполюсного автоматического выключателя. С выхода автомата напряжение поступает на клеммы питания термореле А1 и А2. Ноль соединяется с клеммой термореле А2 и левым выводом нагревателя.
Фаза соединяется с клеммой термореле А1 и перемычкой перебрасывается на левый вывод контакта К1 и постоянно присутствует на нем. Правый вывод контакта К1 соединен с правым выводом нагревателя. Датчик температуры подключается к клеммам Т1 и Т2.
В исходном состоянии, когда температура окружающей среды выше заданного значения, контакт реле К1 разомкнут и напряжение на ТЭН не поступает. Как только температура опустится ниже заданного значения, от датчика придет сигнал и реле даст команду на замыкание контакта К1. В этот момент фаза через замкнутый контакт К1 поступит на правый вывод нагревателя и нагреватель начнет нагреваться. При достижении заданной температуры от датчика опять придет сигнал и реле разомкнет контакт К1 и обесточит нагреватель.
Рассмотрим схему «нагреватель – термореле — контактор».
Питающее напряжение 220 В подается на входные клеммы двухполюсного автоматического выключателя. С выхода автомата напряжение поступает на клеммы питания термореле А1 и А2. Ноль соединяется с клеммой термореле А2, выводом А2 катушки контактора и нижним выводом нагревателя.
Фаза подается на клемму термореле А1 и перемычкой перебрасывается на левый вывод контакта К1, нижний силовой вывод контактора и постоянно присутствует на этих выводах. Правый вывод контакта К1 соединен с выводом А1 катушки контактора. Верхний силовой вывод контактора соединен с верхним выводом нагревателя. Датчик температуры подключается к клеммам Т1 и Т2.
В исходном состоянии, когда температура окружающей среды выше заданного значения, контакт реле К1 разомкнут и на ТЭН напряжение не поступает. При опускании температуры ниже заданного значения от датчика приходит сигнал и реле замыкает контакт К1, по которому фаза поступает на вывод А1 катушки контактора.
При появлении фазы на выводе А1 катушки срабатывает контактор, его силовые контакты замыкаются и фаза попадает на верхний вывод нагревателя и он начинает нагреваться. При достижении заданной температуры от датчика опять придет сигнал, реле разомкнет контакт К1 и обесточит контактор, который в свою очередь обесточит нагреватель.
Если возникли вопросы по контакторам, то Вы можете познакомиться с их устройством и работой, а также рассмотреть схемы подключения контакторов.
Вы также можете посмотреть ролик о нагревателях, где рассказывается и показывается работа каждой схемы.
На этом пока закончим, а во второй части рассмотрим схемы подключения ТЭН к трехфазной сети.
Удачи!
Регулятор мощности для ТЭН не создающий помех
В интернете есть множество примитивных схем симисторных регуляторов мощности. Собранные по этим схемам регуляторы заполонили рынок, включая всем известный Aliexpress. Схемы очень простые и имеют минимум компонентов, не требуют настройки, поэтому заслужили огромную популярность среди потребителей. Но, они все имеют один недостаток, а именно большие помехи, которые излучает регулятор мощности при изменении угла фазы открытия симистора. Помимо помех нагруженное устройство, особенно электродвигатели, нагреваются и создают значительное гудение.
Представленный в этой статье регулятор мощности для ТЭН не создает помех и может регулировать мощность до 3кВт. Незначительное изменение номиналов (читать ниже) даст возможность регулировать обороты синхронного или асинхронного двигателей без значительного их нагрева, как например, при использовании примитивного симисторного регулятора.
Схема регулятора мощности для ТЭН не создающего помех
Принцип регулирования основан на интервальном открытии и закрытии симистора в момент прохождения синусоиды через ноль. Грубо говоря, одну секунду симистор открывается, а потом секунду он закрыт. Эти интервалы вырабатывает генератор, и они настраиваются переменным резистором.
Теперь подробнее. Диодный мост VD1-VD4 выпрямляет напряжение переменного тока
220В. Далее с помощью балластного конденсатора C1 и стабилитрона VD5 напряжение понижается и стабилизируется на уровне +12В. Пульсации сглаживаются емкостью C2. Напряжение +12В будет питать схему управления симистором VS1.
Схема управления симистором состоит из двух основных узлов. Первый — это генератор импульсов, построенный на таймере DA1, а второй узел — это гальваническая развязка на оптопаре U1.
Генератор имеет практически постоянную частоту (около 1Гц) с изменяемой шириной импульса.
При спаде импульса на выходе таймера DA1 (вывод 3), его 7 вывод внутренне (через встроенный транзистор) соединяется с общим проводом (GND) и через светодиод U1, резистор R4 и светодиод HL1 протекает ток около 10мА. Внутренний светодиод U1 засвечивается и оптосимистор U1 открывается, подавая управляющий ток в вывод G симистора VS1. Открытие оптосимистора происходит только при прохождении синуса через ноль, так как MOC3063 имеет такую схему контроля. Это и исключает помехи данного регулятора. Открывшийся симистор VS1 пропускает через себя ток нагрузки ТЭН.
Далее по фронту импульса на 3 выводе таймера DA1 вывод 7 отключается от общего провода и оптопара U1 закрывается, вслед за ней закрывается симистор, отключая ТЭН. И далее все по циклу повторяется, пока таймер генерирует импульсы.
Ширина импульса зависит от скорости заряда и разряда конденсатора C3. Чем дольше происходит заряд и быстрее происходит разряд, тем уже импульс и наоборот. Регулируется это переменным резистором R2. Заряд емкости C3 выполняется с выхода таймера (вывод 3) через цепь R3VD6R2, а разряд происходит через R2 и VD7.
На графике выходное напряжение регулятора мощности будет выглядеть пачками целых, необрезанных периодов (полупериодов).
Параллельно силовым терминалам симистора VS1 подключена помехоподавляющая цепь R7С5, ее можно и не устанавливать.
По интервалам засвечивания HL1 можно судить об уровне ограничения мощности ТЭН.
Компоненты
Резисторы R1 и R7 мощностью 1Вт. Остальные 0.25Вт.
Емкости C1 и С5 пленочные на 400В. Конденсатор C4 керамический на 63В.
Для увеличения частоты генератора (для работы с электродвигателями) можно уменьшить емкость конденсатора C1, например до 1мкФ.
MOC3063 меняется на MOC3043 или MOC3083. Можно пробовать установить MOC3061 или MOC3062 но для их открытия нужен больший ток, а значит нужно уменьшать номинал R4, что может повлечь за собой необходимость увеличения емкости балластного конденсатора C1.
Стабилитрон с малым минимальным током открытия BZX55C10, BZX55C11 или BZX55C12. Подойдет и отечественный стабилитрон Д814В(Г,Д). Не подойдут стабилитроны 1n474*, либо опять же придется увеличивать емкость балластного конденсатора C1.
Симистор VS1 выбирается исходя из тока нагрузки, и берется минимальный запас по току не менее 30%. Для регулятора мощности ТЭН 3кВт я применил симистор BTA20-600B (рассчитанный на 20А). Рекомендую применять серию BTA с изолированным корпусом. Корпус симистора этой серии имеет металлический фланец, но он не соединен с его выводами. Подойдут, например BTA12-600B или BTA16-600B. Работать будет и серия BT, например, по этой схеме на симисторе BT137-600D я собирал регулятор температуры паяльника.
Для более надежной работы рекомендуется использовать светодиод красного цвета в качестве компонента HL1. У красного цвета наименьшее падение напряжения, это важно для этой схемы.
Охлаждение
Площадь теплоотвода будет зависеть от мощности ТЭН. Для 1кВт минимальная площадь приблизительно составит 150см 2 , для 2кВт – 300см 2 , для 3кВт – 450см 2 .
Не забываем про термопасту между симистором и радиатором. Также не забываем установить изоляционную прокладку и втулку, если корпус симистора неизолированный.
При использовании регулятора с ТЭН мощнее 1.5кВт я рекомендую пропаять медную жилу вдоль силовых дорожек печатной платы и демонтировать с нее винтовые клеммы, заменив их пайкой. Это исключит слабые места регулятора.
При эксплуатации на большой мощности (более 1.5кВт) установите автоматический выключатель, так как стеклянные предохранители очень сильно раскаляются, особенно в местах соприкосновения с держателем.
Испытание
При испытаниях регулятора мощности действительно симистор открывался при прохождении синуса через ноль, что очень порадовало отсутствием мерцания рядом включенного светильника, как при использовании примитивных схем. Для убеждения я через понижающий трансформатор взглянул осциллографом на форму выходного напряжения, синусоида была с целыми периодами без отсечения.
Первое включение было с подключенной на выход лампой накаливания, при этом радиатор можно не ставить, если лампа слабее 80Вт.
Далее регулятор был нагружен ТЭН мощностью 1.3кВт, полет нормальный.
Печатная плата регулятора ТЭН не создающего помех СКАЧАТЬ
Сообщества › Домашние Напитки › Блог › Тэн и регулятор напряжения.
Доброго Всем !
Граждане самогонщики, поделитесь, где купить Тэн на 2.5 — 3.0 Квт, и регулятор мощности с индикатором напряжения.
Два дня инет рою, вариантов масса, только всё реклама,
хочется услышать мнения реальных пользователей.
Комментарии 57
почитал комменты и понял -народ далек от понятий в приготовлении напитков, не понимает что такое ректификация и дистилляция, где и когда какой метод использовать .Что такое флегмовое число и как его определить для данного типа колонны .САМОЕ главное что поняли, что купив колонну или «апппппарат» становятся экспертами от А до Я, что напиток приготовленный является верхом в винокурении (заметьте, не в самогоноварении)
Лично я занимаюсь этим процессом много лет, и сказать что я полностью изучил этот вопрос я не могу, а тем более меня раздражают всякого рода Эксперты
сначала нужно было написать для чего он тебе нужен, для самогонного аппарата или же для колонны, если для аппарата, то можно купить обыкновенный диммер с ручной регулировкой, для колонны нужна стабильность чтобы не нарушать тепломассообмен, поэтому нужно ставить автоматический РМ 2, ТЭН нужен с нержавейки на базарах их полно
У автоматического РМ 2 есть стабилизация?Ищу себе под колонну вариант.Блок ТЭНов на 3,5 кВт.
сам сделай, а тэн аристоновский
подробное видео от www.youtube.com/channel/UCynmnFomNDM0UnS4jE6pOgA
я по нему делал, только коробка у меня другая
ногу дать ссылки продавцов у кого покупал комплектующие на али (хотя у него под видео есть вроде тоже ссылки)
все стоит около 3 — 3,5 тысяч руб. + твои руки
Да, скинь ссылок
Да, скинь ссылок
Да, скинь ссылок
Да, скинь ссылок
Да, скинь ссылок
Да, скинь ссылок
сам сделай, а тэн аристоновский
подробное видео от www.youtube.com/channel/UCynmnFomNDM0UnS4jE6pOgA
я по нему делал, только коробка у меня другая
ногу дать ссылки продавцов у кого покупал комплектующие на али (хотя у него под видео есть вроде тоже ссылки)
все стоит около 3 — 3,5 тысяч руб. + твои руки
у него обыкновенный диммер, а это танцы с бубнами, все время нужно стоять и регулировать напряжение (включение чайников, бойлеров и прочей техники вызывают скачки)
сам сделай, а тэн аристоновский
подробное видео от www.youtube.com/channel/UCynmnFomNDM0UnS4jE6pOgA
я по нему делал, только коробка у меня другая
ногу дать ссылки продавцов у кого покупал комплектующие на али (хотя у него под видео есть вроде тоже ссылки)
все стоит около 3 — 3,5 тысяч руб. + твои руки
у него обыкновенный диммер, все время нужно подстраивать из-за скачков напряжения, от колонны не отойти если учесть что колонна работает по 8-10 часов
у меня если и есть скачки то они только в воде тк у меня своя скважина и только это вызывает перепад на термометре, а в электрике нет
а у колонны так или иначе надо стоять как минимум, при отборе голов и потом настройки темп для отбора тела
друг ты чуть не прав, колонна сразу выводится на определенные показатели, будь то вода, или напряжение -этим создается тепломассообмен, что есть для колонны основным показателем, поэтому головы » и тело отбираются на одних «настройках «, для этого и применяются всевозможная автоматика для поддержания напряжения и для контроля и настройки воды (50 градусов) применяются игольчатые краны.Маленькое отступление делал различные виды колонн лет так 10 и вроде все хорошо, но у каждого
автора своя заморочка, и тут стрельнула колонна «прима «, я быстренько переделал одну из своих и понял, что это сила .Потом уже сделав ее по чертежам я понял что это самое то .В чем ее основное отличие -один раз настроил и куришь до тех пор пока хвосты не подойдут
для меня важен сам процесс))) так сказать, я не готов все автоматизировать, да и зачем
я просто поделился тем, что я сам пользую, а выбор за автором)))
хочет включить и уйти пускай все автоматизирует, но это совсем другие затраты, что касается меня мне не в напряг подойти и перенастроить колонну с отбора голов на отбор тела …
Регулятор мощности до трёх киловатт
Такое очень простое, и в то же время очень полезное устройство, можно применить для управления оборотами электродвигателей с фазным ротором. Например, электродрель старого производства, у которой нет встроенного регулятора оборотов, и ещё большого количества подобных инструментов и механизмов, которым не помешает регулировка оборотов, для расширения возможностей данного устройства.
Так же, такой регулятор отлично и бесступенчато регулирует мощность электрических нагревателей любого типа. Например, конфорки электроплиты, калориферы и тому подобное.
Регулятор может плавно менять освещённость ламп накаливания и диммируемых светодиодных в широких пределах от ноля до 100%.
Для начала монтажа устройства соберём детали.
Нам понадобится:
R1 – 20 Килоом, R3 — 3.3 Килоом, R4 – 300 Ом,
R2 – потенциометр — от 470 Килоом до 1 Мегаом,
C1 и C2 -0.05 МкФ, C3 – 0.1 МкФ,
T1 -динистор или ещё его называют диак DB3,
T2 – симистор или по другому — триак.
Симистор можно взять Советского производства из серии КУ208.
Или BT138-800, BT139-600 или им подобные, эти симисторы в Китае около 10 рублей за штуку, так же как и макетные платы, на которой мы и будем собирать данное устройство.
Макетная плата здорово облегчает и убыстряет монтаж электронных приспособлений. Не нужно заморачиваться с изготовлением и сверлением печатных плат. Просто вставляешь радиодетали в готовые отверстия, припаиваешь, соединяешь по схеме перемычками и готово.
Все конденсаторы и динистор можно выпаять из старых энергосберегающих ламп. Конденсаторы с нужными номиналами и динисторы есть не во всех лампах, так что нужно поискать. Динисторы в разных корпусах внизу второй фотографии (чтобы вы имели представление об их внешнем виде), а на корпусах у них написано DB3 (с лупой можно прочитать).
Потенциометр я взял от старого, ещё Советского телевизора, но подойдёт и любой другой с указанными номиналами.
Радиатор от компьютерного блока, но его нужно подбирать, в зависимости от планируемой нагрузки, которой вы собираетесь управлять. До 300 ватт – радиатор совсем не нужен, а чем выше нагрузка, тем массивнее радиатор. Размеры радиатора зависят и от характера нагрузки, так что подбор дело индивидуальное, но чем больше радиатор, тем лучше режим работы симистора и он будет работать дольше без аварий. Так что не скупитесь и поставьте побольше.
Резисторы везде есть, в любой аппаратуре, так что подобрать не составит большой проблемы. В Китае, тоже можно купить. 600 резисторов разных номиналов «набор», стоит около 150 рублей, вместе с доставкой, так что проще купить, чем заморачиваться с поиском и выпаиванием из блоков.
Клеммы для подключения питания и нагрузки можно взять любые, какие найдёте, но можно и вовсе обойтись без них, вопрос в удобстве использования данного устройства в эксплуатации.
Схема устройства выглядит так.
Цепочка R4 – C3 является защитой от радиопомех и её можете убрать, но соседи за это могут побить, если поймают.
Теперь приступаем к сборке.
Детали размещаем на макетной плате, так быстрее, на мой взгляд, удобнее и выглядит хорошо. Пайку выполнять нужно как можно более качественно и желательно не спеша.
Олово из Китая качественное не встречал, так что воспользуйтесь любым другим.
Перемычки (на схеме обозначенные красным цветом) выполняем медным проводом повышенного сечения, в зависимости от мощности нагрузки. На 3 киловатта — 2,5 квадратных миллиметра будет, с запасом, в самый раз. Я планирую управлять оборотами дрели на 800 ватт, и провод взял 1,5 мм, конечно тоже с запасом, но как говорится запас…. . И лучше будет работать.
Подключаем лампочку в качестве наглядной нагрузки и кусок провода с вилкой для подключения к сети.
Когда устройство подключаете к питанию, действуйте предельно осторожно! Все элементы схемы находятся под полным напряжением сети 220 вольт! Опасно для жизни!
Смотрите видео и убеждайтесь, что всё работает, как и планировалось.
Простой регулятор мощности 3,5 кВт
Источник: elektrouzel.ru |
Часто возникает необходимость регулировать мощность электрического тока. Например, что бы убавить напряжение электролампы и тем самым продлить ей срок службы или плавно менять частоту вращения электродвигателя, так же не лишним будет регулировка температуры жала паяльника и т.д. и т.п. Продолжать можно долго. Выход, конечно, есть, это может быть балластный резистор, ЛАТР, балластный конденсатор, но гораздо более эффективен, на мой взгляд, симисторный регулятор. В энергопотребителях не слишком критичных к форме питающего напряжения это наилучший выбор.
Сразу скажу, что я не большой специалист в данном вопросе, поэтому воспользовавшись интернетом, я был неприятно поражён сложными схемами управления симисторов. Предлагаемые схемы содержат слишком много деталей и, по-моему, устарели. Скажем, зачем городить схемы на транзисторах или микросхемах, когда существуют дешёвые и надёжные динисторы. Допустим симметричный (двунаправленный), динистор DB3 стоит в моём уральском городке всего три рубля. При сегодняшних ценах это даже смешно. А преимуществ, по сравнению с транзисторными схемами, где транзисторы работают в режиме обратимого пробоя (лавинообразно отпирающаяся транзисторная схема), много. Я уже не говорю о микросхемах. Для простого регулятора собирать подобные схемы невыгодно ни в плане экономии средств, ни в плане экономии времени, да и заморачиваться лишний раз не охота. Предлагаемая схема проста, надёжна и доступна для повторения. Собрать её сможет даже человек, не обладающий элементарными базовыми знаниями в электронике.
Современная элементная база позволяет собрать такую схему буквально из нескольких деталей (ушло несколько вечеров, причем львиную часть времени потратил на корпус и слесарку)! Привожу переднюю панель и фото самого регулятора. В продаже такой стоит более 100 баксов. А промышленный прибор легко переваливает за 400 баксов!
Он может пригодиться для регулировки освещения ламп накаливания, регулировки температуры ТЭНов, фенов, тепловых пушек, но не годится для работы на индуктивную ( трансформатор, асинхронный двигатель) или емкостную нагрузку. Симистор моментально выходит из строя.
На всякий случай поясню назначение деталей. Т1 – это симистор, в моём случае я использовал КУ 208, хотя возможно подключить и импортные симисторы (триаки) ВТА, ВТВ, ВТ. Элемент схемы Т – это и есть вышеупомянутый симметричный динистор (диак) импортного производства DB 3 (можно DB 4). По размеру он очень мал, что делает монтаж его очень удобным, я например, в некоторых случаях припаивал его непосредственно к управляющему выводу симистора. Выглядит он так:
Резистор 510.Оm – ограничивает максимальное напряжение на конденсатор 0,1 mkF, то есть если движок переменного резистора поставить в положение 0.Оm, то сопротивление цепи всё равно будет 510.Оm
Справа на схеме резистор на 20 kOm и конденсатор 0.22mkF именуемая RC цепью. RC цепочка, это своеобразная защита симистора от выбросов напряжения при работе на индуктивную нагрузку. То есть если Ваша схема будет регулировать активную нагрузку (лампочка, паяльник, ТЭН и т.д.), то R3 и C можно исключить из схемы, а это делает схему до смешного простой.
Итак, конденсатор 0,1mkF заряжается через резисторы 510.Om и переменный резистор 420kOm, после того, как напряжение на конденсаторе достигнет напряжения открывания динистора DB 3, динистор формирует импульс, открывающий симистор, после чего, при проходе синусоиды, симистор закрывается. Частота открывания-закрывания симистора зависит от напряжения на конденсаторе 0.1 mkF, которое, в свою очередь, зависит от сопротивления переменного резистора. Таким образом, прерывая ток (с большой частотой) схема регулирует мощность в нагрузке. Допустим, если подключить электролампу через диод, мы заставим работать её «в полнакала» и продлим её жизнь, однако не получиться регулировать яркость, да и неприятного мерцания не избежать. Этого недостатка нет в симисторных схемах, так как частота переключения сисмистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. При работе на индуктивную нагрузку, например электродвигатель, можно услышать своеобразное «пение», это частота с которой симистор подключает нагрузку к цепи.
Скажу для тех, кто не знает: электродрели прочий электроинструмент с регулировкой вращения так же использует симисторные схемы. Правда, двигатели в вышеперечисленном коллекторные. Но данная схема была испытана и с асинхронным двигателем 220 V(вытяжка в мастерской) и результат был отличный.