Как практически снижают потерю напряжения в линии?

где P и Q активная и реактивная мощности кВт и квар U линейное... Индексы и относятся соответственно к началу и концу линии электропередачи...

Как практически снижают потерю напряжения в линии?

Снижение потери напряжения

Потеря напряжения в линии при пренебрежении поперечной составляющей DU=U1-U2

,

где P и Q – активная и реактивная мощности, кВт и квар; U – линейное напряжение, кВ; r и x – активное и реактивное (индуктивное) сопротивления линии электропередачи, Ом.

Индексы 1 и 2 относятся, соответственно, к началу и концу линии электропередачи.

Относительная потеря напряжения

Если принять, что при продольной компенсации напряжения U1 и U2 остаются равными напряжениям без компенсации, то из предыдущего выражения следует, что включение установки продольной компенсации снижает относительную потерю напряжения до значения

Разность DU* и DU’*, т.е. снижение относительной потери напряжения, равна:

где Р – расчетная нагрузка, квт;

l – длина линии, км;

х0 – индуктивное сопротивление 1 км провода, ом/км;

U – номинальное линейное напряжение, кв.

Необходимая степень компенсации с определяется в зависимости от заданной величины снижения потери напряжения:

Выразив через относительные реактивные потери в линии, получим:

Предельное допустимое повышение уровня напряжения в конце линии DU2макс определяет максимальную степень компенсации, что соответствует полной компенсации потери напряжения в линии (DU’=0):

Мощность конденсаторов на 1% повышения напряжения при заданном S возрастает при увеличении cosj, в особенности значительно при cosj, близком к 1 (рис. 68). Выбор мощности последовательно включенных конденсаторов может быть сделан на основании следующего.

Если обозначить полную мощность, протекающую в линии, до конденсаторов S1, а после места включения их S1, то

разделив S1 на S2, получим:

Мощности S1 и S1 могут быть выражены следующим образом:

Решая уравнение относительно Qп.к, получаем:

или, обозначив выражение в фигурных скобках через a:

Значение a можно получить из рис. 69. величина отношения напряжения после конденсаторов U2 к напряжению перед конденсаторами U1 является заданной величиной, которую желательно получить при установке продольной компенсации.

Из рис. 69 видна зависимость регулирующего эффекта продольной компенсации от cosj2.

Например, при cosj2»1 можно повысить напряжение только на 5%. Установка продольной компенсации экономична при cosj2

Дата добавления: 2015-12-17 ; просмотров: 657 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Снижение потерь напряжения

Потери напряжения Δ U на участке электрической сети определяются так:

(13.7)

где Р — активная мощность, кВт; Q — РП, квар; R и Х соответственно активное и реактивное сопротивления ЛЭП, Ом; — номинальное напряжение сети, В.

Активные и реактивные сопротивления практически постоянны, а активная и реактивная мощности переменные, причем характер этих изменений может быть различным:

— При медленном изменении нагрузки в соответствии с ее графика — отклонения напряжения ;

— При резко переменном характере нагрузки — колебания напряжения ;

— При несимметричной распределении нагрузки по фазам электрической сети — несимметрия напряжение трехфазной системе ;

— При нелинейной нагрузке — несинусоидальность формы кривой напряжения (Ланцов, 2014).

Снижение потерь напряжения достигается:

1) выбором сечения проводников ЛЭП по допустимой потерей напряжения;

2) применением продольной емкостной компенсации реактивного сопротивления ЛИНИИ ( X ). Однако это приводит к повышению токов короткого замыкания при X → 0. Благодаря последовательному включению конденсаторов К (продольная емкостная компенсация) потери напряжения в линии определяются по формуле

(13.8)

где — часть индуктивного сопротивления, компенсируется конденсаторами, Ом; — часть напряжения, соответствует активной мощности, В; — снижение потерь напряжения за счет компенсации реактивной мощности, В.

Таким образом, последовательно включены конденсаторы компенсируют часть индуктивного сопротивления линии, тем самым уменьшается в линии и создается определенная дополнительное напряжение в сети, зависит от нагрузки.

Последовательное включение конденсаторов целесообразно лишь при значительной РП нагрузки при коэффициенте РП . Если этот коэффициент близок к нулю, потери напряжения в линии определяются в основном активным сопротивлением и активной мощностью. В этих случаях компенсация индуктивного сопротивления нецелесообразна.

Последовательное включение конденсаторов достаточно эффективно при резких колебаниях нагрузки, поскольку регулирующий эффект конденсаторов (величина дополнительного напряжения) пропорционален току нагрузки и автоматически меняется практически безынерционной. Поэтому последовательное включение конденсаторов необходимо применять в воздушных линиях напряжением 35 кВ и ниже, питающих резко переменную нагрузку с относительно низким коэффициентом мощности. их используют также в промышленных сетях с резко переменными нагрузками (Конюхова, 2002);

3) компенсацией РП ( Q ) для снижения ее передачи электросетями с помощью КУ и синхронных электродвигателей, работающих в режиме перевозбуждения. Регулировочный эффект компенсирующих устройств можно определить по формуле

(13.9)

где — мощность компенсирующей установки.

Помимо снижения потерь напряжения, это является одним из эффективных мер энергосбережения, снижает общие потери электроэнергии в сетях;

4) регулированием напряжения U в центре питания ( ):

(13.10)

которое осуществляется с помощью трансформаторов, оснащенных устройством автоматического регулирования коэффициента трансформации в зависимости от величины нагрузки;

5) напряжение может регулироваться на промежуточных трансформаторных подстанциях ( ):

(13.11)

с помощью трансформаторов, оснащенных устройством переключения отпаек на обмотках с различными коэффициентами трансформации (переключение без возбуждения, то есть с отключением от сети).

Первый (/?) И второй (А) способы избираются при проектировании сети и не могут в дальнейшем изменяться. Третий ( ) и пятый ( ) методы эффективны

для регулирования при сезонной смене нагрузки сети, но управлять режимами работы компенсирующего оборудования потребителей необходимо централизованно, в зависимости от режима работы всей сети. Четвертый способ — регулирование напряжения в центре питания ( ) — позволяет энергоснабжающей организации регулировать напряжение в соответствии с графиком нагрузки сети (Ланцов, 2014).

Потери и падение напряжения — в чем различия

В обычной жизни человека слова «потери» и «падение» применяются для обозначения факта снижения определенных достижений, но обозначают разную величину.

При этом «потерями» обозначает утрату части, ущерб, уменьшение количества достигнутого ранее уровня. Потери нежелательны, но с ними можно мириться.

Под словом «падение» понимается более серьёзный урон, связанный с полным лишением прав. Таким образом, даже иногда происходящие потери (скажем, кошелька) со временем могут привести к падению (например, уровня материальной жизни).

В этом плане рассмотрим этот вопрос по отношению к напряжению электрической сети.

Как образуется потери и падение напряжения

Электроэнергия на большие расстояния передается по воздушным линиям от одной подстанции к другой.

Провода ВЛ рассчитаны на передачу допустимой мощности и изготавливаются из металлических жил определенного материала и сечения. Они создают активную нагрузку с величиной сопротивления R и реактивную — X.

На приемной стороне стоит трансформатор, преобразующий электроэнергию. Его обмотки обладают активным и ярко выраженным индуктивным сопротивлением XL. Вторичная сторона трансформатора понижает напряжение и передает его дальше потребителям, нагрузка которых выражается величиной Z и носит активный, емкостной и индуктивный характер. Она тоже оказывает влияние на электрические параметры сети.

Напряжение, приложенное на провода ближайшей к передающей электроэнергию подстанции опоре ВЛ, преодолевает реактивное и активное сопротивление цепи в каждой фазе и создает в ней ток, вектор которого отклоняется от вектора приложенного напряжения на угол φ.

Характер распределения напряжений и протекания токов по линии для симметричного режима нагрузки показан на картинке.

Поскольку каждая фаза линии питает разное количество потребителей, которые к тому же случайным порядком отключаются или подключаются в работу, то идеально сбалансировать фазную нагрузку технически очень сложно. В ней всегда есть небаланс, который определяется векторным сложением токов фаз и записывается величиной 3I0. В большинстве расчетов им просто пренебрегают.

Энергия, затраченная передающей подстанцией, частично расходуется на преодоление сопротивления линии и доходит до приемной стороны с небольшими изменениями. Эта доля характеризуется потерей и падением напряжения, вектор которого немного уменьшается по амплитуде и сдвигается по углу в каждой фазе.

Как рассчитываются потери и падение напряжения

Для понимания процессов, происходящих при передаче электроэнергии, удобна векторная форма представления основных характеристик. Различные математические методы расчета также базируются на этом способе.

Чтобы упростить вычисления в трехфазной системе ее представляют тремя однофазными схемами замещения. Этот способ хорошо работает при симметричной нагрузке и позволяет анализировать процессы при ее нарушениях.

В приведенных схемах активное R и реактивное X сопротивление каждого провода линии подключаются последовательно к комплексному сопротивлению нагрузки Zн, характеризуемой углом φ.

Далее проводится расчет потери и падения напряжения в одной фазе. Для этого надо задать данные. С этой целью выбирается подстанция, принимающая энергию, на которой уже должна быть определена допустимая нагрузка.

Величина напряжения каждой высоковольтной системы уже задана справочниками, а сопротивления проводов определяются по их длине, поперечному сечению, материалу и конфигурации сети. Максимальный ток в цепи задан и ограничен свойствами проводников.

Поэтому для начала вычислений мы имеем: U2, R, X, Z, I, φ.

Берем одну фазу, например, «А» и откладываем для нее на комплексной плоскости вектора U2 и I, сдвинутые на угол φ, как показано на рисунке 1. Разность потенциалов на активном сопротивлении провода совпадает по направлению с током, а по величине определяется выражением I∙R. Этот вектор откладываем от окончания U2 (Рис. 2).

Разность потенциалов на реактивном сопротивлении провода отличается от направления тока на угол φ1 и вычисляется произведением I∙X. Откладываем его от вектора I∙R (Рис. 3).

Напоминания: за положительное направления вращения векторов на комплексной плоскости принято движение, противоположное ходу часовой стрелки. Ток, проходящий через индуктивную нагрузку, отстает по углу от приложенного напряжения.

На рисунке 4 показано вычерчивание векторов разности потенциалов на общем сопротивлении провода I∙Z и напряжения на входе в схему U1.

Теперь можно сравнивать вектора на входе в схему замещения и на нагрузке. Для этого расположим полученную диаграмму горизонтально (Рис. 5) и из начала координат проведем дугу с радиусом модуля U1 до пересечения с направлением вектора U2 (Рис. 6).

На рисунке 7 показано увеличение треугольника для наглядности и проведение вспомогательных линий, обозначение характерных точек пересечения буквами.

Внизу картинки показано, что получившийся вектор ac называют падением напряжения, а ab — потерями. Они отличаются по величине и направлению. Если вернуться к исходному масштабу, то будет видно, что ас получен в результате геометрического вычитания векторов (U2 из U1), а ab — арифметического. Этот процесс показан на картинке ниже (Рис. 8).

Вывод формул для расчета потери напряжения

Теперь вернемся к рисунку 7 и обратим внимание, что отрезок bd очень маленький. По этой причине при расчетах им пренебрегают, а потери напряжения рассчитывают по длине отрезка ad. Он состоит из двух отрезков ae и ed.

Поскольку ae=I∙R∙cosφ, а ed=I∙x∙sinφ, то потери напряжения для одной фазы можно вычислить по формуле:

Считая нагрузку симметричной во всех фазах (условно пренебрегая 3I0) можно математическими методами вычислить потери напряжения в линии .

Если правую часть этой формулы умножить и разделить на напряжение сети Uн, то получим формулу, позволяющую выполнять р асчет потерь напряжения через мощности .

Величины активной P и реактивной Q мощностей можно снимать с показаний электросчетчиков линии.

Таким образом, потери напряжения в электрической схеме зависят от:

активного и реактивного сопротивления цепи;

составляющих приложенной мощности;

величины приложенного напряжения.

Вывод формул для расчета поперечной составляющей падения напряжения

Вернемся к рисунку 7. Векторную величину ас можно представить гипотенузой прямоугольного треугольника acd. Катет ad мы уже вычислили. Определим поперечную составляющую cd.

На рисунке видно, что cd=cf-df.

Используя выведенные закономерности проведем небольшие математические преобразования и получим поперечную составляющую падения напряжения.

Определение формулы для расчета напряжения U1 в начале ЛЭП

Зная величину напряжения на конце линии U2, потери ∆Uл и поперечную составляющую падения δU, можно вычислить по теореме Пифагора величину вектора U1. В развернутой форме она имеет следующий вид.

Расчет потерь напряжения выполняется инженерами на стадии создания проекта электрической схемы для оптимального выбора конфигурации сети и составляющих ее элементов.

В процессе эксплуатации электроустановок при необходимости могут периодически проводиться одновременные замеры векторов напряжений на концам линий и сравнение полученных результатов методом простых расчетов. Этот способ актуален для устройств, к которым предъявляются повышенные требования, обусловленные необходимостью высокой точности работы.

Потери напряжения во вторичных цепях

Примером могут служить вторичные цепи измерительных трансформаторов напряжения, которые по длине иногда достигают нескольких сотен метров и передаются специальным силовым кабелем увеличенного сечения.

К электрическим характеристикам такого кабеля предъявляются повышенные требования по качеству передачи напряжения.

Современные защиты электротехнических объектов требуют работу измерительных систем с высокими метрологическими показателями и классом точности 0,5 или даже 0,2. Поэтому потери подводимого к ним напряжения необходимо контролировать и учитывать. Иначе вводимая ими погрешность в работу оборудования может существенно влиять на все эксплуатационные характеристики.

Потери напряжения внутри протяженных кабельных линий

Особенность конструкции длинного кабеля состоит в том, что он обладает емкостным сопротивлением за счет довольно близкого расположения токопроводящих жил и тонкого слоя изоляции между ними. Оно дополнительно отклоняет проходящий через кабель вектор тока и изменяет его величину.

Влияние снижения напряжения на емкостном сопротивлении необходимо учесть в расчете для изменения величины I∙z. В остальном описанная выше технология не меняется.

В статье приведены примеры потерь и падения напряжения на воздушных линиях электропередач и кабелях. Однако, они происходят во всех потребителях электроэнергии, включая электродвигатели, трансформаторы, индуктивности, конденсаторные установки и другие устройства.

Величина потерь напряжения для каждого вида электрооборудования законодательно регламентирована применительно к условиям эксплуатации, а принцип их определения во всех электрических схемах действует одинаково.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Как практически снижают потерю напряжения в линии?

Во время передачи электроэнергии по проводам к электроприемникам ее небольшая часть расходуется на сопротивление самих проводов, т.е. на их нагрев. Чем выше протекаемый ток и больше сопротивление провода, тем больше на нем будет потеря напряжения. Величина тока зависит от подключенной нагрузки, а сопротивление провода тем больше, чем больше его длина. Логично? Поэтому нужно понимать, что провода большой длины могут быть не пригодны для подключения какой-либо нагрузки, которая, в свою очередь, хорошо будет работать при коротких проводах того же сечения.

В идеале все электроприборы будут работать в нормальном режиме, если к ним подается то напряжение, на которые они рассчитаны. Если провод рассчитан не правильно и в нем присутствуют большие потери, то на вводе в электрооборудование будет заниженное напряжение. Это очень актуально при электропитании постоянным током, так как тут напряжение очень низкое, например 12 В, и потеря в 1-2 В тут будет уже существенной.

Чем опасна потеря напряжения в электропроводке?

  1. Отказом работы электроприборов при очень низком напряжении на входе.

В выборе кабеля необходимо найти золотую середину. Его нужно подобрать так, чтобы сопротивление провода при нужной длине соответствовало конкретному току и исключить лишние денежные затраты. Конечно, можно купить кабель огромного сечения и не считать в нем потери напряжения, но тогда за него придется переплатить. А кто хочет отдавать свои деньги на ветер? Давайте ниже разберемся, как учесть потери напряжения в кабеле при его выборе.

Для того чтобы избежать потерь мощности нам нужно уменьшить сопротивление провода. Мы знаем что, чем больше сечение кабеля, тем меньше его сопротивление. Поэтому эта проблема в длинных линиях решается путем увеличения сечения жил кабеля.

Вспомним физику и перейдем к небольшим формулам и расчетам.

Напряжение на проводе мы можем узнать по следующей формуле, зная его сопротивление (R, Ом) и ток нагрузки (I, А).

U=RI

Сопротивление провода рассчитывается так:

R=рl/S, где

р — удельное сопротивление провода, Ом*мм 2 /м;

l — длина провода, м;

S — площадь поперечного сечения провода, мм 2 .

Удельное сопротивления это величина постоянная. Для меди она составляет р=0,0175 Ом*мм 2 /м, и для алюминия р=0,028 Ом*мм 2 /м. Значения других металлов нам не нужны, так как провода у нас только с медными или с алюминиевыми жилами.

Приведу небольшой пример расчета для медного провода. Для алюминиевого провода суть расчета будет аналогичной.

Например, мы хотим установить группу розеток в гараже и решили протянуть туда медный кабель от дома длинной 50 м сечением 1,5 мм 2 . Там будем подключаться нагрузка 3,3 кВт (I=15 А).

Учтите, что ток «бежит» по 2-х жильному кабелю туда и обратно, поэтому «пробегаемое» им расстояние будет в два раза больше длины кабеля (50*2=100 м).

Потеря напряжения в данной линии будет:

Что составляет практически 9% от номинального (входного) значения напряжения.

Значит в розетках будет уже напряжение: 220-17,5=202,5 В. Этого будет маловато для нормальной работы электрооборудования. Также свет может гореть тускло (в пол накала).

На нагрев провода будет выделяться мощность P=UI=17,5*15=262,5 Вт.

Также учтите, что здесь не учтены потери в местах соединения (скрутках), в вилке электроприбора, в контактах розетки. Поэтому реальные потери напряжения будут больше полученных значений.

Давайте повторим данный расчет, но уже для провода сечением 2,5 мм 2 .

U=(рl)/s*I=0,0175*100/2,5*15=10,5 В или 4,7%.

Теперь повторим данный расчет, но уже для провода сечением 4 мм 2 .

U=(рl)/s*I=0,0175*100/4*15=6,5 В или 2,9%.

Согласно ПУЭ, отклонения напряжения в линии должны составлять не более 5%.

Поэтому в нашем случае нужно выбирать кабель сечением 2,5 мм 2 для нагрузки мощностью 3,3 кВт (15 А), а не 1,5 мм 2 .

Для постоянного тока такие сечения при указанных длинах использовать нельзя. Допусти, что необходимо запитать электроприбор током 15 А от источника постоянного тока 12 В (например, от аккумулятора или понижающего трансформатора). Используется кабель сечением 2,5 мм 2 длинной 50 м.

Потери тут будут 10,5 В. Это значит, что на входе в электроприбор будет присутствовать напряжение 12-10,5=1,5 В. Это бред и ничего работать не будет. Даже кабель сечением 25 мм 2 не спасет. Тут выход один — это нужно переносить источник питания ближе к потребителю.

Если ваша розетка находится очень далеко от щитка, то обязательно посчитайте потери напряжения в данной линии.

Не забываем улыбаться:

Звонок мужу в командировку:
— Дорогой, а почему в кране нет воды?
— Понимаешь, мы живем на 22 этаже и давления, которое создает насос возможно недостаточно.
— Милый, а почему газа нет?
— Понимаешь, сейчас зима и давление в магистральном газопроводе вследствие большого разбора несколько понижено.
— Родной, но почему же тогда нет электроэнергии?!
— Пойди заплати за коммуналку, дура!

Падение и потеря напряжения в ЛЭП

Среди параметров, которые характеризуют режимы ЛЭП имеются такие из них, как падение и потеря напряжения.

Падением напряжения в ЛЭП называется векторная (геометрическая) разность между напряжениями начала и конца линии.

Это падение напряжения, комплексное число, имеет действительную и мнимую части.

BC – действительная часть падения напряжения (продольная составляющая падения напряжения), .

AC – мнимая часть падения напряжения (поперечная составляющая падения напряжения), .

Потерей напряжения называется алгебраическая разность напряжений в начале и конце линии.

BD – разность векторов (если повернуть на угол ).

Проанализируем как будут меняться падения и потери напряжения в зависимости от параметров линии (сопротивлений).

Зависимость погонных сопротивлений от сечения провода

Для распределительных сетей, где где используются малые сечения проводов, угол, поперечная составляющая падения напряжения мала, а потеря напряжения практически равна продольной составляющей падения напряжения.

Таким образом, в распределительных сетях и питающих сетях напряжением до 110 кВ включительно при расчетах режимов можно пренебречь поперечной составляющей падения напряжения, а продольную составляющую считать равной потере напряжения и расчет выполнять по потере напряжения.

Для питающих сетей угол значительный, поперечной составляющей пренебрегать нельзя, поэтому в расчетах питающих сетей напряжением 220 кВ и выше необходимо учитывать как продольную, так и поперечную составляющую и расчет вести по падению напряжения.

Если будут известны данные в начале линии (P, Q, U), то в формулах изменяются только индексы

| следующая лекция ==>
Метод последовательных приближений (метод итерации) | Метод систематизированного подбора при расчете режима ЛЭП

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет