Как преобразовать однофазное напряжение в трехфазное?

Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать.
Содержание
  1. Как преобразовать однофазное напряжение в трехфазное?
  2. Как из 220 Вольт сделать 380 В?
  3. Теория
  4. Способы получения 380 Вольт из 220
  5. Преобразователь напряжения
  6. Используя трансформатор
  7. Использование 3-х фаз
  8. Использование электродвигателя
  9. Электродвигатель в качестве генератора
  10. Выводы
  11. Преобразования однофазных и трехфазных систем
  12. Трехфазное напряжение из однофазной сети всего за 3 минуты: простой лайфхак
  13. Что нужно для получения трехфазного напряжения?
  14. Схема подключения
  15. Запуск системы
  16. Заключение
  17. Тематическое видео: Как сделать 3-ёх фазное напряжение в гараже
  18. Как сделать 3-ёх фазное напряжение в гараже за 5 минут ★Хранители истории★
  19. Как правильно укрыть виноград на зиму: мероприятия и способы укрытия в средней полосе, Сибири, Урале | (Фото & Видео)
  20. Нужно установить розетку, а провода слишком короткие? Простой лайфхак
  21. Как изготовить качели своими руками: особенности конструкции, пошаговые инструкции (чертежи с размерами) | (100 Фото & Видео)
  22. Детектор скрытой проводки своими руками . | Схема +Инструкция
  23. Изготовление железобетонных столбов для забора своими руками
  24. Самодельное приспособление для спайки скруток ⚡
  25. Преобразователь однофазного напряжения в трехфазное
  26. Преобразователь однофазного напряжения в трехфазное. Технические характеристики
  27. Преобразователь однофазного напряжения в трехфазное — описание
  28. Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. Инвертор. Схема. Конструкция. Своими руками. Собрать самому.
  29. Принципиальная схема преобразователя однофазного напряжения в трехфазное.

Как преобразовать однофазное напряжение в трехфазное?

Как из 220 Вольт сделать 380 В?

Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?

Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.

Теория

На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.

В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.

Рис. 1. Структура трёхфазного тока

Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.

Способы получения 380 Вольт из 220

Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:

  • с помощью электронного преобразователя напряжения;
  • путём применения трансформатора;
  • использованием трёх фаз;
  • используя трёхфазный двигатель в качестве генератора;
  • пользуясь конденсаторной схемой.

Преобразователь напряжения

Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.

Рис. 2. Преобразователь напряжения

Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.

Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).

Используя трансформатор

С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.

Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.

Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.

Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.

Использование 3-х фаз

Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.

При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.

Использование электродвигателя

Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.

Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.

Пример подключения фазосдвигающего конденсатора см. на рис. 3.

Рис. 3. Подключение пускового конденсатора

Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.

Рис. 4. Трёхфазный ток от электромотора

Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.

Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.

Электродвигатель в качестве генератора

Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).

Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.

Рис. 5. Трёхфазный двигатель в качестве генератора

В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.

Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.

Выводы

Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:

  • стабильные параметры тока;
  • безопасная эксплуатация;
  • обеспечение заявленной выходной мощности;
  • компактность установки.

Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.

Преобразования однофазных и трехфазных систем

В ряде случаев необходимо преобразовывать системы переменного тока с одним числом фаз в системы с другим числом фаз, а также выполнять другие преобразования.

Преобразование уравновешенных систем в уравновешенные или неуравновешенных в неуравновешенные производится относительно просто. При преобразовании неуравновешенной системы в уравновешенную или обратно в систему вводятся конденсаторы или катушки индуктивности, либо то и другое.

В течение отрезков времени, когда мощность системы превышает среднюю, излишняя мощность запасается в конденсаторе или катушке индуктивности, а при мощности, меньшей средней, возвращается в систему.

Пример схемы преобразования неуравновешенной однофазной системы в неуравновешенную двухфазную показан на рис. 1.

Рис. 1. Схема преобразования в двухфазную систему

Вторичная обмотка однофазного трансформатора разделена на две одинаковые половины. В одной половине обмотки ЭДС действует, предположим, от 0 к А, а в другой от В к 0. Если считать положительным направление ЭДС от начала обмотки к концу, то при этом получим двухфазную систему, ЭДС половин обмотки которой сдвинуты по фазе относительно друг друга на угол π (рис. 1).

Однофазная система может быть преобразована в уравновешенную. Пример схемы преобразования однофазной системы в трехфазную приведен на рис. 2.

Рис. 2. Схема преобразования однофазной системы в уравновешенную трехфазную

Добавочные реактивные сопротивления хс и x l подобраны так, чтобы модули Z a — jx c и + jх l были одинаковы (и равны модулю Zc, а аргументы равны — π /3 и π /3 соответственно. При этом получим трехфазную симметричную систему токов I A, I B и IC и соответствующую им трехфазную симметричную систему напряжений.

Преобразование однофазной системы в любую многофазную можно выполнить и при помощи различных электронных и электромеханических устройств. Например, мы можем получить требуемую многофазную систему от многофазного электрического генератора, который приводится от однофазного двигателя. Дефицит и излишек мощности в этом случае покрываются за счет изменений кинетической энергии вращающегося двигателя.

Наибольшее распространение имеют преобразователи трехфазного переменного тока в системы многофазного переменного тока. Многофазные системы с числом фаз шесть, двенадцать и большим числом фаз служат для питания выпрямителей, регулируемых приводов и других целей.

Схема простейшего шестифазного преобразователя дана на рис. 3 .

Рис. 3. Векторные диаграммы и схема преобразования трехфазной системы в шестифазную

Первичная обмотка трансформатора получает питание от трехфазного источника энергии. У каждой из трех вторичных обмоток имеются выводы из их середин. Выводы от середин вторичных обмоток соединяются вместе.

В целом на стороне вторичных обмоток получаем шестифазную симметричную систему напряжений, образующих шестилучевую звезду и сдвинутых относительно друг друга на угол π/3 (рис. 3).

Для получения систем с большим числом фаз следует вводить добавочные ЭДС, обеспечивающие требуемые сдвиги фазных напряжений.

Путем преобразования могут быть получены и другие системы, например система из двух напряжений, сдвинутых относительно друг друга на угол π/2.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Трехфазное напряжение из однофазной сети всего за 3 минуты: простой лайфхак

Простому обывателю доступно лишь однофазное электричество. Для бытовых нужд этого вполне хватает, но приборы с мощность более 2,2 кВт требуют трехфазного подключения. Мощные двигатели обычно подключают к однофазной сети через конденсаторы.

Однако при таком способе подключения существует один значительный недостаток – значительная потеря мощности. Чтобы этого избежать, можно сделать трехфазное напряжение из однофазного за 3 минуты с помощью самодельного расщепителя фаз.

Что нужно для получения трехфазного напряжения?

Во-первых, понадобится трехфазный электродвигатель с мощностью большей, как минимум на 30%, чем у подключаемого оборудования. Так, например, для подключения 3кВт компрессора потребуется электродвигатель, как минимум на 4,5 кВт. Больше — лучше.

Также нужен пакетный переключатель и конденсатор для облегчения запуска ведущего двигателя.

Схема подключения

Ведущий электродвигатель (расщепитель фаз) подключается к сети 220 В, — способ подключения (звезда, треугольник) не имеет значения. Запуск производится через конденсатор С=100 мкФ.

Далее к контактам обмоток ведущего двигателя через пакетный выключатель подключается трехфазное оборудование, — схема подключения (звезда или треугольник) не имеет значения.

Данная схема элементарна, но работает достаточно стабильно.

Запуск системы

Включаем через пакетник

Подаём напряжение 220 В на первый (ведущий) двигатель через конденсаторы, — облегчают запуск. Можно без них, но тогда необходимо придать первичное движение валу двигателя.

В течение нескольких секунд вал электромотора будет набирать крутящий момент, после этого, если пуск производился с конденсаторами, то их отключаем.

На обмотках ведущего мотора образовалось трехфазное напряжение около 200 В: на двух по 200, на одной около 190 В.

Включаем пакетный выключатель – ведомый электромотор запустился без проблем. Всё отлично работает.

Схему при необходимости можно и нужно доработать. Кстати, для стабилизации работы, т.е. для сглаживания нагрузки можно первый двигатель оснастить тяжелым маховиком, который не будет давать проседать нагрузке.

Заключение

Этот простой способ был известен ещё в 60-х годах прошлого века. О чём не раз упоминалась в специализированной литературе: журнал МК, статья именно Синёва, №4 1972 год. В этом материале рассмотрены варианты корректировки напряжения по всем фазам.

Тематическое видео: Как сделать 3-ёх фазное напряжение в гараже

Как сделать 3-ёх фазное напряжение в гараже за 5 минут ★Хранители истории★

Трехфазное напряжение из однофазной сети всего за 3 минуты: простой лайфхак

Для нас очень важна обратная связь с нашими читателями. Оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Ваше мнение будет полезно другим пользователям.

Как правильно укрыть виноград на зиму: мероприятия и способы укрытия в средней полосе, Сибири, Урале | (Фото & Видео)

Нужно установить розетку, а провода слишком короткие? Простой лайфхак

Как изготовить качели своими руками: особенности конструкции, пошаговые инструкции (чертежи с размерами) | (100 Фото & Видео)

Детектор скрытой проводки своими руками . | Схема +Инструкция

Изготовление железобетонных столбов для забора своими руками

Самодельное приспособление для спайки скруток ⚡

абсолютно бесполезная идея
Поставьте трёхфазный счётчик и ещё на электроэнергии с экономите
Какой КПД у этой громоздкой конструкции

Владимир, я уверен с вами многие не согласятся! Это решение для временного и событийного использования. Сколько нужно времени для того, чтобы установить трёхфазный счётчик?

Подтверждаю! Уже около 10лет работает такая конструкция. Запитывается дома все: от слабенького заточного до циркулярки с двигателем на 3квт. Главное не перегружать двигатель-генератор.

Из за одного потребителя(циркулярки например)ставить 3х фазный счетчик не всегда удобно. Во первых элсети потребуют проект, который будут согласовывать пол года. Потом финансовая часть – провода, счетчик, монтаж/подключение. А этот вариант очень даже работоспособный. Лет 15 назад так запускали циркулярку. Большой мотор просто валялся во дворе и мощность была раза в 2 больше. Он грелся, а вот на циркулярке работал как от 3х фаз и был холодный. Насчет маховика идея мне понравилась, можно было бы попробовать.

Говорят, что есть такие устройства (пускатели, коммутаторы, фазоинверторы) , не знаю, сколько они стоят, но если завалялся трёхфазный асинхронный двигатель (так?), то выйдет в разы дешевле (в качестве временного решения)

Но! Это же не экономично тратить доп. энергию на вращение пустого двигателя…

Движок лучше продать , а на эти деньги купить инвертор .

Понадобилось запустить дровокол от 220 вольт, двигатель 1,5 кВт, соединил в треугольник и запустил через частотный преобразователь, который купил на АЛИ за 4500 р. Частотник на 2,2 кВт.
И не надо городить весь этот бред! К тому же частотник программируется на любые режимы, обороты регулируются от 0 до максимальных без потери крутящего момента. Реверс также присутствует!

Давно циркулярку так работает. Двигатель 1,1 кВт. Генератор подключен в режиме звезда он повышает напряжения.Пилит доски на 60 мм быстро.Отлично!

Зачем ДВА двигателя? Сразу ставь конденсатор на нужный мотор и все…работает. подключай любое трехфазное устройство к однофазной сети через конденсатор и нет проблем.

Любой движок можно запустить через фазосдвигающие конденсаторы. Второй двигатель ни к чему.

Преобразователь однофазного напряжения в трехфазное

Преобразователь однофазного напряжения в трехфазное. Технические характеристики

Преобразователь однофазного напряжения в трехфазное — описание

Сегодня в быту находят широкое применение различные устройства, для питания которых требуется трехфазное напряжение. Но бытовая сеть, как правило, однофазная. Поэтому возникает потребность преобразовать однофазное напряжение в трехфазное. Авторы предлагают один из вариантов такого преобразователя.

Известны различные преобразователи однофазного напряжения в трехфазное. В [1] описан аппарат, выполненный на основе асинхронного трехфазного двигателя, как и любая электрическая машина обратимого: генератор может служить двигателем, и наоборот. Недостатки такого преобразователя — значительный «перекос» фаз, а также то, что мощность двигателя-преобразователя должна быть больше, чем питаемого от него электрооборудования.

Управляемый полупроводниковый инвертор для питания трехфазного двигателя предложен в [2]. Его недостаток заключен в применении регулируемого автотрансформатора для изменения выходного трехфазного напряжения. Но некоторые его узлы (устройства управления выходными ключами, питаемые бутстрепным способом) очень хорошо работают и поэтому использованы и в разработанном нами устройстве.

Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения рассмотрен в [3]. Но для питания «верхних» и «нижних» транзисторов его выходных ключей требуются отдельные источники напряжения. Сами ключи выполнены на биполярных транзисторах, имеющих большое внутреннее сопротивление в режиме насыщения.

Предлагаемый преобразователь однофазного напряжения в трехфазное лишен недостатков устройств, описанных в [2] и [3]. Его общая схема представлена на рис. 1. Выходы формирователя трехфазных импульсных последовательностей А1 соединены с входами трех одинаковых мощных коммутаторов А2.1, А2.2 и А2.3, к выходам которых и подключают трехфазную нагрузку.

Коммутаторы питаются выпрямленным с помощью диодного моста VD1 напряжением однофазной сети 220 В. Конденсаторы С2 и СЗ — сглаживающие. К сети подключен и «электронный трансформатор» для питания галогенных ламп U1 — преобразователь сетевого напряжения в импульсное амплитудой 15В и частотой 45 кГц. Его выходное напряжение выпрямляет мост из высокочастотных выпрямительных диодов VD2—VD5. Конденсатор С1 сглаживает пульсации выпрямленного напряжения, которым питаются электродвигатели М1—МЗ вентиляторов, обдувающих теплоотвод, на котором размещены мощные транзисторы коммутаторов А2.1—А2.3. Вентиляторы — типоразмера 80×80 мм от компьютера.

Напряжением 12 В с выхода интегрального стабилизатора DA1 питают формирователь А1 и маломощные узлы коммутаторов А2.1—А2.3. Примененная в качестве DA1 микросхема KIA7812AP1505 отличается тем, что имеет изолированный корпус. Это позволяет крепить ее непосредственно на шасси устройства, используя его в качестве теплоотвода.

Схема формирователя А1 изображена на рис. 2. Генератор тактовых импульсов собран на таймере DA1 КР1006ВИ1 по схеме мультивибратора. Их частоту регулируют переменным резистором R1.1, а одновременно установленный с ним на одной оси переменный резистор R1.2 изменяет скважность импульсов. С повышением частоты длительность импульсов на выходе задающего генератора должна уменьшаться.

Тактовые импульсы поступают на вход счетчика DD2, на выходах которого поочередно на один период повторения импульсов устанавливается высокий уровень напряжения. Поскольку уровень на входе СР счетчика низкий, изменение его состояния происходит по нарастающим перепадам импульсов на входе CN. С появлением высокого уровня на выходе 6 (выводе 5) и соединенном с ним входе R счетчик немедленно возвращается в состояние с высоким уровнем на выходе 0 (вывод 3), после чего цикл повторяется.

Импульсы с выходов счетчика DD2 с помощью микросхемы DD3 преобразуются в три последовательности импульсов длительностью три такта, повторяющихся с периодом шесть тактов. Последовательности взаимно сдвинуты во времени на треть периода (два такта). Элементами микросхемы DD4 эти последовательности инвертируют, а с помощью D-триггеров микросхемы DD6 задерживают относительно исходных. Для этого на вход С микросхемы DD6 поданы тактовые импульсы, причем изменение состояния триггеров происходит по их спадам. В результате импульсы на выходах микросхемы DD6 задержаны относительно входных на длительность тактового импульса.
Из полученных описанным образом двенадцати импульсных последовательностей элементы микросхем DD1.1—DD1.4, DD5.1, DD5.2 формируют импульсы управления коммутаторами А2.1—А2.3.

Коммутаторы выполнены по схеме, заимствованной из [2] и показанной на рис. 3. Выходные полевые транзисторы прототипа заменены на более мощные IGBT IRG4BC40U (остаточное напряжение — 1, 7 В при токе 40 А) с демпфирующими диодами FR607. Все IGBT установлены через изолирующие прокладки на общем теплоотводе, обдуваемом вентиляторами (см. рис. 1). Размеры теплоотвода — 260×90 мм.

На двусторонней печатной плате, изображенной на рис. 4, размещены, как показано на рис. 5, все элементы узлов А1, А2.1—А2.3, за исключением сдвоенного переменного резистора, IGBT и демпфирующих диодов. Обозначения элементов узлов А2.1—А2.3 на плате снабжены цифровыми префиксами, соответствующими номеру узла.

При указанных на схеме номиналах элементов тактового генератора частота формируемого трехфазного напряжения регулируется сдвоенным переменным резистором R1 от 31 до 52 Гц, а коэффициент заполнения соответственно от 66 до 92 %. Последнее позволяет избежать чрезмерного увеличения тока в обмотках электродвигателя при пониженной частоте питающего напряжения. Интервал регулирования частоты может быть сдвинут вверх уменьшением емкости конденсатора С1 в тактовом генераторе.

Для двигателя на номинальную частоту 50 Гц повышать частоту питающего напряжения выше 100 Гц не стоит. При этом частота вращения ротора приблизится к 6000 мин ‘, что опасно для подшипников. Если использовать преобразователь для питания строительных и сельскохозяйственных механизмов, двигатели которых рассчитаны на напряжение 36 В при частоте 200. 400 Гц, то на диодный мост VD1 (см. рис. 1) нужно подать напряжение 36 В 50 Гц, а частоту тактового генератора в узле А1 соответственно увеличить.

ЛИТЕРАТУРА
1. Клейменов В. Электродвигатель— преобразователь однофазного напряжения в трехфазное. — Радио, 2002, № 1, с. 28, 29.
2. Мурадханян Э. Управляемый инвертор для питания трехфазного двигателя. — Радио, 2004, № 12, с. 28, 29.
3. Нарыжный В. Источник питания трехфазного электродвигателя от однофазной сети с регулировкой частоты вращения. — Радио, 2003, № 12, с. 35—37.

В. КАЛАШНИК, Н. ЧЕРЕМИСИНОВА, г. Воронеж
Радио №3, 2009

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. Инвертор. Схема. Конструкция. Своими руками. Собрать самому.

Схема преобразователя однофазного напряжения в трехфазное. (10+)

Преобразователь однофазного напряжения в трехфазное — Схема

В этой схеме, как и в любой другой, могут быть ошибки. Если Вы их обнаружите, пожалуйста, напишите нам. Подпишитесь на новости, чтобы быть в курсе исправлений и обновлений материала.

Внимание! Сборка прибора требует навыков в области силовой электроники, связана с контактом с высоким напряжением, которое может быть опасным для жизни как самого инженера, так и пользователей прибора. Убедитесь, что Вы обладаете нужной квалификацией.

Схема выполнена на основе импульсного силового источника синусоидального напряжения. Советую ознакомиться с его схемой.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Эта схема не является трехфазным инвертором, но может быть использована для его разработки. Если вместо корректора коэффициента мощности на вход устройства установить преобразователь 12 или 24 вольта в 600 вольт, который можно получить на основе резонансного инвертора, перестроив его выходное напряжение с 310 на 600 вольт, то будет отличный трехфазный инвертор.

Принципиальная схема преобразователя однофазного напряжения в трехфазное.

Преобразователь выдает трехфазное напряжение хорошей синусоидальной формы 370 В, 1.5 кВт (в сумме на все три фазы). Напряжение 370 В, а не 380, выбрано, исходя из того, что для получения 380 В нужно питать схему постоянным напряжением 620 В. Но силовые ключи и драйверы полумоста на 600 В гораздо более распространены. А снижение питающего напряжения на 3% для большинства приборов значения не имеет.

Схема использует три идентичных блока. Элементы на этих блоках имеют на схеме одинаковые обозначения. Схема рисовалась путем переделки схемы источника синусоидального напряжения. Перенумеровывать элементы у меня не хватило духу. Так что некоторые номера пропущены. Простите меня за это.

C13 — 1 мкФ, R25 — 5.5 кОм, C14 — 0.5 мкФ, R26 — 11 кОм, C15 — 0.25 мкФ, R27 — 22 кОм, C16 — 0.1 мкФ, R25 — 55 кОм.

ККМ — корректор коэффициента мощности. Его схема здесь не приводится. Об этом будет отдельная статья. Корректор коэффициента мощности обычно выполняется по схеме повышающего преобразователя. Так что его не составит труда выполнить на выходное постоянное напряжение 600 В. Оно-то нам и нужно для питания схемы.

М1 — маломощный мост для получения низковольтного напряжения для питания низковольтной схемы преобразователя.

Диоды VD4, VD5, VD6 — выпрямительные диоды на 600В, желательно быстродействующие, но подойдут и 100 нс. Мы используем 1N5406.

Диоды VD1, VD2 — импульсные низковольтные кремниевые диоды, например, детекторные.

Полевые транзисторы VT1, VT2 — полевые транзисторы от 600В, 3А. Подойдут, например, IRFBG 30, или другие.

D5 — операционный усилитель, рассчитанный на работу при однополярном питании 12В, с высоким входным сопротивлением и с возможностью подключения к выходу нагрузки 2 кОм или менее. Хорошо подходит К544УД1, КР544УД1.

D6 — интегральный стабилизатор напряжения (КРЕН) на 12В.

VT5 — Маломощный высоковольтный транзистор на 600 вольт. Он работает только в момент включения схемы. Так что в процессе работы мощность не рассеивает.

VD9 — Стабилитрон 15В.

C11 — 1000мкФ 25В.

R25 — 300кОм 0.5Вт

D1 — Интегральные широтно-импульсно модулирующие (ШИМ) контроллеры. Это 1156ЕУ3 или его импортный аналог UC3823.

Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резисторы R22, исключить резисторы R17 и R18, подвесить (никуда не подключать) ножки 16 и 11 всех трех микросхем. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.

D3 — Драйверы полумоста. IR2184

R7, R6 — Резисторы по 10кОм. C3, C4 — Конденсаторы по 100нФ.

R10, R11 — Резисторы по 20кОм. C5, C6 — Электролитические конденсаторы по 30 мкФ, 25 вольт.

R8 — 20кОм, R9 — подстроечный резистор 15кОм

R1, R2 — подстроечники по 10кОм

R3 — 10 кОм

C2, R5 — резистор и конденсатор, задающие частоту работы ШИМ — контроллеров. Их выбираем таким образом, чтобы частота была около 50 кГц. Подбор стоит начать с конденсатора 1 нФ и резистора 100 кОм.

R4 — Эти резисторы в разных плечах — разные. Дело в том, что для получения синусоидального напряжения со сдвигом фаз на 120 гр. используется фазосдвигающая цепь. Кроме сдвигания она еще и ослабляет сигнал. Каждое звено ослабляет сигнал в 2.7 раза. Так что подбираем резистор в нижнем плече в диапазоне от 10 кОм до 100 кОм так, чтобы ШИМ контролер при минимальном значении синусоидального напряжения (с выхода операционного усилителя) был закрыт, при небольшом его увеличении начинал выдавать короткие импульсы, при достижении максимума был практически открыт. Резистор среднего плеча будет в 9 раза больше, резистор верхнего — в 81 раз.

После подбора этих резисторов более точно коэффициент усиления можно регулировать подстроечными резисторами R1.

R17 — 300 кОм, R18 — 30 кОм

C8 — 100нФ. Это могут быть низковольтные конденсаторы. На них высокого напряжения не бывает, хотя они стоят в высоковольтной части.

R22 — 0.23 Ом. 5Вт.

VD11 — Диоды Шоттки. Выбраны диоды Шоттки, чтобы обеспечить минимальное падение напряжения на диоде в открытом состоянии.

R23, R24 — 20 Ом. 1Вт.

L1 — дроссель 10мГн (1E-02 Гн), на ток 5А, C12 — 1мкФ, 400 В.

L2 — несколько витков тонкого провода поверх дросселя L1. Если в дросселе L1 — X витков, то в катушке L2 должно быть [X] / [60]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Данная схема вполне может быть переделана на другую выходную частоту? на 400Гц например? И если да, то необходимо настроить задающий генератор и всё? И подскажите как рассчитывались номиналы L1, C12 Читать ответ.

Инвертор, преобразователь, чистая синусоида, синус.
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за.

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.

Светомузыка, светомузыкальная приставка своими руками. Схема, конструк.
Как самому собрать свето-музыку. Оригинальная конструкция свето-музыкальной сист.

Резонансный стабилизатор переменного напряжения, токовые клещи постоян.
Два примера применения магнитного усилителя — токовые клещи и стабилизатор напря.

Формирование произвольного / регулируемого выходного напряжения с помо.
Регулировка, установка выходного напряжения специализированной микросхемы интегр.