Как увеличить выходное напряжение трансформатора?

Как увеличить мощность электронного трансформатора Бывает, что, собирая то или иное устройство, требуется определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам
Содержание
  1. Как увеличить выходное напряжение трансформатора?
  2. Как увеличить мощность электронного трансформатора
  3. Переделка электронного трансформатора в более мощный
  4. Как увеличить мощность преобразователя напряжения 12 220
  5. Основное назначение
  6. Как повысить силу тока, не изменяя напряжения?
  7. Условия эксплуатации
  8. Как увеличить напряжение на выходе трансформатора. Бытовые трансформаторы
  9. Расшифровка маркировки
  10. По числу и схеме соединения обмотки
  11. Электронный трансформатор taschibra 200w схема. Увеличение мощности электронного трансформатора эт
  12. Требования сети
  13. Электронный трансформатор taschibra 200w схема. Увеличение мощности электронного трансформатора эт
  14. Как увеличить мощность преобразователя напряжения 12 220
  15. Для схемы «УСИЛИТЕЛЬ МОЩНОСТИ CB-РАДИОСТАНЦИИ»
  16. Как повысить силу тока, не изменяя напряжения?
  17. Для схемы «Генератор для электронной гравировки»
  18. Как увеличить напряжение на выходе трансформатора. Бытовые трансформаторы
  19. Для схемы «Импульсный сетевой блок питания»
  20. Электронный трансформатор taschibra 200w схема. Увеличение мощности электронного трансформатора эт
  21. Защиты трансформатора
  22. Регулирование напряжения на выходе трансформатора
  23. Как увеличить выходное напряжение трансформатора?
  24. Увеличение мощности электронного трансформатора

Как увеличить выходное напряжение трансформатора?

Как увеличить мощность электронного трансформатора

Бывает, что, собирая то или иное устройство, требуется определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам необходим мощный блок питания. Приобрести железные трансформаторы с необходимыми характеристиками на сегодняшний день не составляет труда. Но они довольно дорогостоящие, а большие размеры и вес являются их главными недостатками. А сборка и наладка хороших импульсных блоков питания весьма сложная процедура. И многие не берутся за это.

Далее, вы узнаете о том, как собрать мощный и при этом несложный блок питания, взяв за основу конструкции электронный трансформатор. По большому счету, разговор пойдет об увеличении мощности таких трансформаторов.

Для переделки был взят 50-ваттный трансформатор.

Планировалось увеличить его мощность до 300 Вт. Этот трансформатор был приобретен в ближайшем магазине и стоил примерно 100 р.

Стандартная схема трансформатора выглядит следующим образом:

Трансформатор представляет собой обычный двухтактный полумостовой автогенераторный инвертор. Симметричный динистор является основным компонентом, осуществляющим запуск схемы, поскольку он подает первоначальный импульс.

В схеме задействованы 2 высоковольтных транзистора с обратной проводимостью.

Схема трансформатора до переделки содержит следующие компоненты:

  1. Транзисторы MJE13003.
  2. Конденсаторы 0,1 мкФ, 400 В.
  3. Трансформатор, имеющий 3 обмотки, две из которых являются задающими и имеют по 3 витка провода сечением 0,5 кв. мм. Еще одна в качестве обратной связи по току.
  4. Входной резистор (1 Ом) используется как предохранитель.
  5. Диодный мост.

Несмотря на отсутствие в этом варианте защиты от КЗ, электронный трансформатор работает без сбоев. Назначение устройства – это работа с пассивной нагрузкой (к примеру, офисные «галогенки»), поэтому стабилизация выходного напряжения отсутствует.

Что касается основного силового трансформатора, то его вторичная обмотка выдает около 12 В.

Теперь взгляните на схему трансформатора с увеличенной мощностью:

В ней стало даже меньше компонентов. Из первоначальной схемы были взяты трансформатор обратной связи, резистор, динистор и конденсатор.

Оставшиеся детали были извлечены из старых компьютерных БП, а это 2 транзистора, диодный мост и силовой трансформатор. Конденсаторы были приобретены отдельно.

Транзисторы не помешает заменить на более мощные (MJE13009 в корпусе TO220).

Диоды были заменены на готовую сборку (4 А, 600 В).

Также годятся и диодные мосты от 3 А, 400 В. Емкость должна составлять 2,2 мкФ, но можно и 1,5 мкФ.

Силовой трансформатор был изъят из БП формата ATX на 450 Вт. На нем были удалены все штатные обмотки и намотаны новые. Первичная обмотка была намотана тройным проводом 0,5 кв. мм в 3 слоя. Общее количество витков – 55. Необходимо следить за аккуратностью намотки, а также за ее плотностью. Каждый слой изолировался синей изолентой. Расчет трансформатора производился опытным путем, и была найдена золотая середина.

Вторичная обмотка наматывается из расчета 1 виток – 2 В, но это лишь в том случае если сердечник такой же, как в примере.

При первом включении обязательно использовать страховочную лампу накаливания на 40-60 Вт.

Стоит заметить, что в момент запуска лампа не вспыхнет, поскольку после выпрямителя нет сглаживающих электролитов. На выходе высокая частота, поэтому для того чтобы делать конкретные замеры, необходимо сначала выпрямить напряжение. Для этих целей был использован мощный сдвоенный диодный мост, собранный из диодов КД2997. Мост выдерживает токи до 30 А, если прикрепить к нему радиатор.

Вторичная обмотка предполагалась на 15 В, хотя на деле получилось чуть больше.

В качестве нагрузки было взято все, что оказалось под рукой. Это мощная лампа от кинопроектора на 400 Вт при напряжении в 30 В и 5 20-ваттных ламп на 12 В. Все нагрузки подключались параллельно.

Первым делом был произведен замер тока, который показал, что токи свыше 20 А.

После этого нужно измерить выходное напряжение под нагрузкой. Расчетное напряжение составляло около 15 В. Реальное значение без нагрузки – 17 В, а под нагрузкой просело до 15,3 В. В итоге легко узнать мощность, которая составляет примерно 300 Вт. Это чистая мощность на выходе.

Переделка электронного трансформатора в более мощный

Как увеличить мощность преобразователя напряжения 12 220

Забыли пароль? Изменен п. Расшифровка и пояснения — тут. Нужно можернизировать трансформатор 2х56В. Судя по формуле коэффициента трансформации получается это можно сделать уменьшив кол-во витков на вторичных обмотках.

Как эти торы мотают? Есть просто аккрутно разрезать пленку сверку то я сразу получу доступ к вторичке? Или есть какие-то подводные камни никогда такое не делал. Мне бы уменьшить напряжение на вторичке и увеличить силу тока. Как я понимаю, именно это я и получу? Отматыванием витков вторичной напряжение на ней Вы уменьшите,а с током не все так просто Кстати,доматыванием первички Вы однозначно по току вторичной проиграете Ну и встречно к имеющимся включить их.

Ничего, что часть первички прямо на сердечнике, а остальная поверх вторички? Ток вторички определяется габаритной мощностью и напряжением вторички. Ещё, если уже есть вторичка, плотность тока не должна превышать допустимое значени для материала обмотки. Иначе она греться буит. Увеличив первичку, Вы напряжение уменьшите, но ток тоже упадет. Лучше вскройте пленку, может быть вам повезет и вторичка намотана двумя проводами. Тогда отматывайте и периодически проверяйте напряжение. Чтобы увеличить ток вторички соедините в параллель.

Я на вторичке делал несколько отводов Провод был медный ,через несколько витков зачищал от изоляции около 1 см,припаивал туда провод и отводил на клемник. Доматыванием первички по току не проиграешь, несколько уменьшится ток холостого хода. Доматывать надо таким же проводом, каким намотана первичка. Если домотать дополнительные обмотки тем же проводом каким намотана вторичка, и соединить со вторичкой встречно сила тока останется прежней. Кстати габаритная мощность трансформатора нагруженного на выпрямитель с емкостным фильтром диодный мост с конденсатором на выходе должна в 1,6 раз превышать мощность нагрузки!

Если моё железо способно передать киловатт на вторичку, то максимальный ток вторички будет получен при делении этого киловатта на напряжение вторички. Как влияют на это витки первички? Я бы тоже сначала собрал, блок питания, подключил бы эквивалент нагрузки, измерил выходное напряжение и тогда было бы ясно сколько надо сматывать или доматывать витков. Кстати хочу заметить, что не обязательно, что на торах внешняя обмотка будет вторичной, то есть низковольтной.

Мне попадались трансы, где внешняя обмотка была сетевой. Вы должны быть пользователем, чтобы оставить комментарий. Зарегистрируйтесь для получения аккаунта. Это просто!

Уже зарегистрированы? Войдите здесь. Нет пользователей, просматривающих эту страницу. Поиск в. Войти анонимно. Вся активность Главная Станки, материалы и инструменты Электропривод Как уменьшить выходное U трансформатора-тора. Назад 1 2 3 4 5 6 Вперёд Страница 1 из 7. Рекомендованные сообщения. Опубликовано: 18 мая Поделиться сообщением Ссылка на сообщение Поделиться на других сайтах. Можно просто первичку домотать. Если не боитесь чего испортить, режьте и отматывайте вторичку.

Если боитесь, домотайте поверху первичку. Только изоляцию не забудьте, а то на вторичку пробьёт. Опубликовано: 18 мая изменено. Я на вторичке делал несколько отводов Провод был медный ,через несколько витков зачищал от изоляции около 1 см,припаивал туда провод и отводил на клемник И пожалуйста -ступенчатое регулировка напряжения! Просто подсоедини нужный провод. А для каких целей транс.

И зачем увеличивать ток вторички? Про запас? Это будет силовая часть станка с ЧПУ. Микрошаговые драйвера хочу на 80В. Итак, нужно уменьшить, скажем, до 50В выходное напряжение и по возможности увеличить ток.

Ток обмоток трансформатора определяется допустимым нагревом обмоток. VASJ , что за манера отвечать вопросом на вопрос? По Вашему, если я их отмотаю, то ток вторички увеличится? Или Вы тоже ток нагрузки и ток холостого хода перепутали? Чего только не напишут Создайте аккаунт или войдите в него для комментирования Вы должны быть пользователем, чтобы оставить комментарий Создать аккаунт Зарегистрируйтесь для получения аккаунта.

Зарегистрировать аккаунт. Войти Уже зарегистрированы? Войти сейчас. Перейти к списку тем Электропривод. Войти Регистрация.

Основное назначение

Промышленный СТ производят на крупных электротехнических заводах страны. Промышленность выпускает установки мощностью свыше 1 млн. кВА. Амплитуда классов промышленных напряжений достигает 1,15 – 1,5 мегавольт. СТ с генераторов ТЭС снимает со щёточных аппаратов ток амплитудой до 24 кВ. Дальнейшее повышение амплитуды происходит в СТ до классов: 110 – 1150 кВ. По территории России ЛЭП работают амплитудой: 10 – 1050 кВ. Потребителям по ВЛ понижающими устройствами ток подаётся амплитудой: 0,4 -10 кВ промышленного назначения, 220 – 380 В сферы ЖКХ, населению МКД, частных секторов.


Схема передачи электроэнергии

В сетях подстанций происходит многократного цикла трансформация электричества. Она меняется регулярно мощными СТ. Их потенциал, амплитуды в 30 раз выше, снятой со щёточных аппаратов генераторов ТЭС, ГЭС, АЭС, ВЭС. Промышленный СТ поддерживает постоянной частоту тока 50 (+/- 1%) Гц. Предел отклонения по ПУЭ держат 1% по причине выхода из строя всех установок потребителей. СТ промышленного применения делают 3-фазного исполнения. Для 1-фазной сети производят 1-фазные устройства.

Как повысить силу тока, не изменяя напряжения?

Недавно в магазине на глаза попался электронный трансформатор для галогенных ламп. Блок был куплен для опытов. Как позже оказалось, он не имел защиту и при КЗ случился настоящий взрыв Трансформатор был довольно мощным Ватт , поэтому на входе был установлен предохранитель, который буквально лопнул. После проверки, оказалось, что половина компонентов сгорело. Ремонт обойдется дорого, да и незачем тратить нервы и время, лучше купить новый. На следующий день были куплены сразу три трансформатора на 50, и ватт.

Многие параметры на выходе зависят от Мощность трансформатора зависит от.

Условия эксплуатации

СТ требуется высокая степень надёжности с большими значениями напряжения, мощности. Это влияет на качество эксплуатации, профилактику. Делаются регламентные работы правильного, полного технического обслуживания, ремонта, испытаний, наладки. Трансформаторы и оборудование находятся в месте постоянного дежурства персонала. Графиками ежедневного осмотра, приборами контроля, измерения проверяется состояние работы электрической сети, трансформаторов.

Контролируют показания датчиков приборов, измеряют:

  • Температуру.
  • Давление.
  • Уровень масла.
  • Степень истощённости влагопоглотителей.
  • Состояние регенераторов масла.

Также читайте: Что такое высоковольтный разъединитель

Проверяется потёки масла в каре трансформатора, ОРУ, ЗРУ, механические повреждения в корпусе, фланцевых местах соединений (масла, охлаждающей жидкости), радиаторов, вентиляторов, участков труб. Контролируется число работающих вентиляторов, уровень масла в газоанализаторе при определённой нагрузке трансформатора. Для каждого режима даётся своё количество работающего оборудования, параметры охлаждающей среды, газа, воды, масла. В устройствах с постоянным дежурством персонала, осмотры делаются реже: 1 раз в 30 дней. Не реже 1 раза в ½ года делается осмотр ОРУ, ВРУ, ЗРУ, трансформаторных пунктов.

По графику обслуживания, при ТО доливается масло, смена непригодного трансформаторного масла новым составом. Определяется качество масла химическим лабораторным анализом. В ПУЭ, инструкции трансформаторов, оборудования даются критерии к требованиям масел, визуальному осмотру, цвету. При аварийных режимах, резкой смене температуры наружного воздуха делаются внеплановые осмотры.

Проверке подлежит защита. 1 раз в 365 дней, капитальный ремонт берут на лабораторный анализ масло. Периодичность ТО устройств регулирования напряжения силовых трансформаторов связана с проверкой контактов меди, латуни окисляемости. Делается им профилактика, зачистка, смазка, переборка, подтяжка динамометрическим ключом для уменьшения переходного сопротивления в контактном узле.

С целью смены плёнки окислов 2 раза в 365 дней отключают трансформаторы от электроэнергии, снимают их нагрузку на 0, переключатели ставят во всевозможные регулируемые положения по нескольку раз. Методы смены положений делают в переходный осенний зимний период до максимального набора нагрузки.

Как увеличить напряжение на выходе трансформатора. Бытовые трансформаторы

Это позволяет сделать схему довольно простой и доступной для повторения многим радиолюбителям. На выходе стоят высокоэффективные выпрямительные диоды удваивающие напряжение. Также можно использовать преобразователь напряжения и без диодов — получая переменное напряжение. Например для электронных балластов при питании ЛДС постоянное напряжение и полярность включения не актуальна, так как в схеме балласта на входе стоит диодный мост. Принципиальная схема показана на рисунке — кликните для увеличения. В преобразователе В используется готовый высокочастотный понижающий трансформатор из блока питания AT или ATX компьютера, но в нашем преобразователе он станет наоборот повышающим. Обычно эти трансформаторы отличаются только габаритами, а расположение выводов идентично. Нерабочий блок питания от ПК можно найти в любой мастерской по ремонту компьютеров. Работа схемы.

Расшифровка маркировки


Расшифровка маркировки, для увеличения схемы нажмите на неё


Для увеличения таблицы нажмите на неё

По числу и схеме соединения обмотки

СТ состоят из 2 или нескольких обмоток. Они индуктивно связаны внутри аппарата. Передающие силовые обмотки электрическую мощность потребителям, называют вторичной обмоткой. Многофазного типа силовая установка обмотками соединяется в звезду многими лучами. 3-фазные трансформаторы соединяются 3-лучевой схемой звезды, треугольник.

Электронный трансформатор taschibra 200w схема. Увеличение мощности электронного трансформатора эт

By Валера5 , March 29, in Трансформаторы, дроссели, ферриты. Имеется трансформатор использую для однополярного питания УНЧ с напряжение на выводах 63,11,3 и 5 вольт,мне же надо для оптимальной работы УНЧ 13 вольт на выходе трансформатора что после выпрямления даст мне около 18 нужных мне вольт постоянки. Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6. Конденсаторы Panasonic.

Представьте себе повышающий трансформатор.

Требования сети

Включение трансформаторов на параллельную работу вызвано определенными особенностями эксплуатации электроустановок. Представленный подход позволяет решить проблемы электроснабжения.

При параллельном подключении силовых трансформаторов удается избежать увеличения токов основного устройства. Система менее подвержена перегрузкам. В процессе параллельного подключения обмоток трансформатора уменьшается показатель сбоев в работе электросети. Вероятность, что не будут работать сразу два трансформаторных устройства, крайне мала.

При эксплуатации силового оборудования высокой мощности необходимо обеспечить достаточное пространство (в высоту) для установки агрегата. В небольшом помещении допускается параллельная работа трансформаторов, согласно ПУЭ. На территории одной электроустановки со стандартными размерами пространства возможно использовать необходимое количество силовой аппаратуры. Для увеличения продуктивности, безопасности работающих от разных источников агрегатов, потребуется правильно создать параллельное соединение обмоток.

Электронный трансформатор taschibra 200w схема. Увеличение мощности электронного трансформатора эт

Как увеличить мощность преобразователя напряжения 12 220

Забыли пароль? Изменен п. Расшифровка и пояснения — тут. Нужно можернизировать трансформатор 2х56В. Судя по формуле коэффициента трансформации получается это можно сделать уменьшив кол-во витков на вторичных обмотках.

Как эти торы мотают? Есть просто аккрутно разрезать пленку сверку то я сразу получу доступ к вторичке? Или есть какие-то подводные камни никогда такое не делал. Мне бы уменьшить напряжение на вторичке и увеличить силу тока. Как я понимаю, именно это я и получу? Отматыванием витков вторичной напряжение на ней Вы уменьшите,а с током не все так просто Кстати,доматыванием первички Вы однозначно по току вторичной проиграете Ну и встречно к имеющимся включить их.

Ничего, что часть первички прямо на сердечнике, а остальная поверх вторички? Ток вторички определяется габаритной мощностью и напряжением вторички. Ещё, если уже есть вторичка, плотность тока не должна превышать допустимое значени для материала обмотки. Иначе она греться буит. Увеличив первичку, Вы напряжение уменьшите, но ток тоже упадет. Лучше вскройте пленку, может быть вам повезет и вторичка намотана двумя проводами. Тогда отматывайте и периодически проверяйте напряжение. Чтобы увеличить ток вторички соедините в параллель.

Я на вторичке делал несколько отводов Провод был медный ,через несколько витков зачищал от изоляции около 1 см,припаивал туда провод и отводил на клемник. Доматыванием первички по току не проиграешь, несколько уменьшится ток холостого хода. Доматывать надо таким же проводом, каким намотана первичка. Если домотать дополнительные обмотки тем же проводом каким намотана вторичка, и соединить со вторичкой встречно сила тока останется прежней. Кстати габаритная мощность трансформатора нагруженного на выпрямитель с емкостным фильтром диодный мост с конденсатором на выходе должна в 1,6 раз превышать мощность нагрузки!

Если моё железо способно передать киловатт на вторичку, то максимальный ток вторички будет получен при делении этого киловатта на напряжение вторички. Как влияют на это витки первички? Я бы тоже сначала собрал, блок питания, подключил бы эквивалент нагрузки, измерил выходное напряжение и тогда было бы ясно сколько надо сматывать или доматывать витков. Кстати хочу заметить, что не обязательно, что на торах внешняя обмотка будет вторичной, то есть низковольтной.

Мне попадались трансы, где внешняя обмотка была сетевой. Вы должны быть пользователем, чтобы оставить комментарий. Зарегистрируйтесь для получения аккаунта. Это просто!

Уже зарегистрированы? Войдите здесь. Нет пользователей, просматривающих эту страницу. Поиск в. Войти анонимно. Вся активность Главная Станки, материалы и инструменты Электропривод Как уменьшить выходное U трансформатора-тора. Назад 1 2 3 4 5 6 Вперёд Страница 1 из 7. Рекомендованные сообщения. Опубликовано: 18 мая Поделиться сообщением Ссылка на сообщение Поделиться на других сайтах. Можно просто первичку домотать. Если не боитесь чего испортить, режьте и отматывайте вторичку.

Если боитесь, домотайте поверху первичку. Только изоляцию не забудьте, а то на вторичку пробьёт. Опубликовано: 18 мая изменено. Я на вторичке делал несколько отводов Провод был медный ,через несколько витков зачищал от изоляции около 1 см,припаивал туда провод и отводил на клемник И пожалуйста -ступенчатое регулировка напряжения! Просто подсоедини нужный провод. А для каких целей транс.

И зачем увеличивать ток вторички? Про запас? Это будет силовая часть станка с ЧПУ. Микрошаговые драйвера хочу на 80В. Итак, нужно уменьшить, скажем, до 50В выходное напряжение и по возможности увеличить ток.

Ток обмоток трансформатора определяется допустимым нагревом обмоток. VASJ , что за манера отвечать вопросом на вопрос? По Вашему, если я их отмотаю, то ток вторички увеличится? Или Вы тоже ток нагрузки и ток холостого хода перепутали? Чего только не напишут Создайте аккаунт или войдите в него для комментирования Вы должны быть пользователем, чтобы оставить комментарий Создать аккаунт Зарегистрируйтесь для получения аккаунта.

Зарегистрировать аккаунт. Войти Уже зарегистрированы? Войти сейчас. Перейти к списку тем Электропривод. Войти Регистрация.


Для схемы «УСИЛИТЕЛЬ МОЩНОСТИ CB-РАДИОСТАНЦИИ»

ВЧ усилители мощностиУСИЛИТЕЛЬ МОЩНОСТИ CB серийно выпускается усилитель РЧ модели 737, предназначенный для работы в СВ-диапазоне. Мною была разработана печатная плата под отечественные радиоэлементы, построена и опробована схема этого усилителя мощности. Схема с нашими аналогами работоспособна и показала очень неплохие результаты несмотря на простоту изготовления. Усилитель получился широкополосным, захватывающим все радиолюбительские диапазоны со 160 м до 10 м включительно. Принципиальная схема усилителя показана на рис.1. На рис.2 и 3 приведены печатная плата и расположение деталей на плате. Для изготовления трансформатора
Т1 были использованы шесть колец с магнитной проницаемостью 600 НН (до 1000 НН — некритично) типоразмера 7 х 4 х 2, по три кольца склеены клеем БФ2, а потом полученные ферритовые «трубки» складывают бок о бок и тоже заливают клеем. Таким образом, продевая в эти трубки по три витка первичной обмотки и вторичной, получаем трансформатор Т1 (рис.4).Для изготовления
трансформатора
Т2 нужны те же кольца — 20 шт, латунные или медные трубки — 2 шт. Терморегулятор рябушка схема по 22 мм длиной каждая и наружным диаметром 4 мм. Мною была использована трубка от старой телескопической антенны. Подробно останавливаться не буду, сошлюсь на [I], где есть методика постройки широкополосного
трансформатора
с короткозамкнутым витком, привожу лишь эскиз расположения выводов
трансформатора
Т2 (рис.5). Катушка L1 выполнена на цилиндрическом каркасе диаметром 8 мм и длиной 10 мм. Обмотка состоит из 19 витков ПЭЛ-0,16 мм. Намотка — виток к витку. Правильно собранная схема усилителя работает сразу, гок холостого хода усилителя зависит от применяемых транзисторов и выставляется R3. Усилитель работает от источника +12 В, но сохраняет работоспособнос…
Смотреть описание схемы …

Как повысить силу тока, не изменяя напряжения?

Недавно в магазине на глаза попался электронный трансформатор для галогенных ламп. Блок был куплен для опытов. Как позже оказалось, он не имел защиту и при КЗ случился настоящий взрыв Трансформатор был довольно мощным Ватт , поэтому на входе был установлен предохранитель, который буквально лопнул. После проверки, оказалось, что половина компонентов сгорело. Ремонт обойдется дорого, да и незачем тратить нервы и время, лучше купить новый. На следующий день были куплены сразу три трансформатора на 50, и ватт.

Многие параметры на выходе зависят от Мощность трансформатора зависит от.

Для схемы «Генератор для электронной гравировки»

Использование для электронной гравировки тока высокой частоты при высоком напряжении дает вероятность проводить гравировку очень тонкими штрихами как на дереве, так и на других обугливающихся материалах.Процесс гравировки основан на прохождении токов высокой частоты (80 кГц и выше) через малые паразитные емкости, при котором между острием резца и гравируемой поверхностью возникает электрическая дуга.Процесс гравировки дает большие возможности и требует меньших усилий, чем выжигание.Источником тока высокой частоты служит генератор, электрическая схема которого приведена на рисунке.Задающий генератор собран на транзисторах VT1 и VT2. Транзистор VT1 обеспечивает усиление сигнала обратной связи, снимаемого с резистора R2.Частоту колебаний определяет входная и выходная проводимости транзисторов VT1 и VT2 и индуктивность катушки L1. Изменение частоты генерации происходит из-за изменения проводимости транзисторов при изменении питающего напряжения.Питание задающего генератора -от регулируемого стабилизатора напряжения на транзисторах VT5 и VT6. Кт838а схемы Изменяя выходное напряжение стабилизатора резистором R12, регулируем частоту генерируемых колебаний в пределах 80…150 кГц. Сигнал от задающего генератора через эмит-терный повторитель на транзисторе VT3 подается на выходной каскад на транзисторе VT4, в коллекторной цепи которого включена первичная обмотка трансформатора
T2. Напряжение с вторичной обмотки подается на резец. Резец представляет собой стержень с остро отточенным концом, вставленный в держатель, изготовленный из фторопласта или другого материала. Нижний конец вторичной обмотки
трансформатора
Т2 подключен к металлическому электроду 2 через конденсатор С5. который предохраняет от режима короткого замыкания при касании резцом 1 электрода 2 при возбуждении дуги. Благодаря включению диода VD1, на резце будут отрицательные импульсы высокочастотного напряжения, которые через паразитные емкости в материале образуют ду…
Смотреть описание схемы …

Как увеличить напряжение на выходе трансформатора. Бытовые трансформаторы

Это позволяет сделать схему довольно простой и доступной для повторения многим радиолюбителям. На выходе стоят высокоэффективные выпрямительные диоды удваивающие напряжение. Также можно использовать преобразователь напряжения и без диодов — получая переменное напряжение. Например для электронных балластов при питании ЛДС постоянное напряжение и полярность включения не актуальна, так как в схеме балласта на входе стоит диодный мост. Принципиальная схема показана на рисунке — кликните для увеличения. В преобразователе В используется готовый высокочастотный понижающий трансформатор из блока питания AT или ATX компьютера, но в нашем преобразователе он станет наоборот повышающим. Обычно эти трансформаторы отличаются только габаритами, а расположение выводов идентично. Нерабочий блок питания от ПК можно найти в любой мастерской по ремонту компьютеров. Работа схемы.

Для схемы «Импульсный сетевой блок питания»

ЭлектропитаниеИмпульсный сетевой блок питания.Блок питания, предназначен для питания переносной телерадиоаппаратуры. Его номинальная выходная мощность — 20 Вт, причем КПД при номинальной мощности — не менее 85%. Рабочая частота преобразования — 68 кГц. Характеристики блока оптимизированы для нагрузки, лежащей в пределах 0,5…1 от номинальной мощности. Он ус-тойчиво работает при изменении сете-вого напряжения в пределах от 170 до 240 В, выдерживает кратковременные замыкания выхода (ток замыкания, измеренный авометром В7-35, равен 6 А). Принципиальная схема блока изображена на рис.1.
Задающий генератор инвертора собран на операционном усилителе DA1, охваченном цепью положительной ОС. Нагрузкой ОУ служит первичная обмотка импульсного трансформатора Т1. Дифференцирующая цепь R7C6 создает форсированный фронт переключения транзисторов VT2 и VT4. Схема умножителя добротности р.п на транзисторе Узел, обеспечивающий ускорение процесса рассасывания неосновных носителей заряда в этих транзисторах, состоит из элементов VT1, VT3, VD8, VD9, R8. R9, С7-С10 и дополнительных обмоток III, IV
трансформатора
Т2. Рассмотрим работу узла на примере верхнего по схеме плеча полумостового инвертора. Пусть транзистор VT2 открыт и насыщен. При этом транзистор VT1 закрыт и к нему приложено напряжение приблизительно 6 В с обмотки III трансформатора Т2. Конденсатор С9 заряжен. По окончании полупериода коммутации скачкообразно меняется полярность напряжения на выходе задающего генератора и, следовательно, на всех обмотках
трансформатора
Т1; LI¦ — напряжение на первичной обмотке
трансформатора
Т1. Т…
Смотреть описание схемы …

Электронный трансформатор taschibra 200w схема. Увеличение мощности электронного трансформатора эт

By Валера5 , March 29, in Трансформаторы, дроссели, ферриты. Имеется трансформатор использую для однополярного питания УНЧ с напряжение на выводах 63,11,3 и 5 вольт,мне же надо для оптимальной работы УНЧ 13 вольт на выходе трансформатора что после выпрямления даст мне около 18 нужных мне вольт постоянки. Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6. Конденсаторы Panasonic.

Представьте себе повышающий трансформатор.

Защиты трансформатора

Ставятся стандартного типа защиты по ПУЭ:

  1. Токовая защита нулевой последовательности от внешних замыканий на землю п.3.2.63.
  2. Защиту от токов, вызванных внешними КЗ п.3.2.64.
  3. Оперативное ускорение защиты от токов, обусловленных внешними КЗ с выдержкой времени 0,5 сек п.3.2.65 (АТ подстанций, блок-генератор СТ).
  4. Газовая защита добавочного трансформатора п.3.2.71.
  5. Защита контактного устройства РПН с реле давления, отдельным газовым реле п.3.2.71.
  6. Дифференциальная токовая защита цепей стороны низшего напряжения (АТ) п.3.2.70 – 3.2.71.
  7. Дифференциальная защита перегруза фаз.
  8. От внутренних повреждений: уровень + давление масла, температура обмотки, стали сердечника, наличию газов.

Регулирование напряжения на выходе трансформатора

Напряжение на вторичной обмотке трансформатора ТМ 6/0,4 при холостом ходе составляет 400 В, когда на первичную обмотку подано 6000 В. При подключении нагрузки потери напряжения в трансформаторе и питающей линии составят 5% (20 В) и напряжение на зажимах электроприемника будет равно номинальному значению 380 В. Напряжение на вторичной обмотке трансформатора ТМ 35/6,3 при холостом ходе составляет 6300 В, когда на первичную обмотку подано 35000 В.

В питающей линии от трансформатора ТМ 35/6,3 до трансформатора ТМ 6/0,4 и в самом трансформаторе ТМ 35/6,3 потери напряжения составляют 5% (300 В) и на первичную обмотку трансформатора ТМ 6/0,4 поступит напряжение 6000 В (рис. 2.67).

Рис. 2.67. Схема питания трансформатора ТМ 6/0,4 и электроприемника

Если подстанция ТМ 35/6,3 расположена близко к подстанции 6/0,4, то потери напряжения в питающей линии будут минимальные и на первичную обмотку трансформатора ТМ 6/0,4 будет поступать напряжение больше номинального, равного 6000 В, например, 6300 В.

Напряжение на вторичной обмотке трансформатора ТМ 6/0,4 будет больше 400 В на 5%, т.е. 420 В. На зажимах электроприемника напряжение будет больше номинального, равного 380 В и составит 400 В. Перенапряжение на зажимах электроприемника, например, лампах накаливания приводит к быстрому выходу из строя (перегорают).

Если подстанция 35/6,3 расположена далеко от подстанции 6/0,4, то потери напряжения в питающей линии будут максимальные и на первичную обмотку трансформатора ТМ 6/0,4 будет поступать напряжение меньше номинального, равного 6000 В, например, 5700 В (что на 5% меньше 6000 В). Напряжении е на вторичной обмотке трансформатора ТМ 6/0,4 будет меньше 400 В на 5%, т.е. 380 В. Напряжение на зажимах электроприемника будет меньше номинального 380 В и составит 360 В. Пониженное напряжение на зажимах асинхронных электродвигателей ведет к снижению вращающего момента и повышенному нагреву. Необходимо сделать так, чтобы когда напряжение на первичной обмотке трансформатора ТМ 6/0,4 больше номинального, или когда оно меньше номинального напряжения на вторичной обмотке, оно было равно 400 В. С этой целью в трансформаторе ТМ 6/0,4 на стороне ВН первичной обмотки имеется основная и дополнительные отпайки.

Основная отпайка соответствует номинальному напряжению 6000 В и номинальному коэффициенту трансформации (рис. 2.68).

Рис. 2.68. Ответвления от первичной обмотки трансформатора

Если =6000 В, переключатель П находится в среднем положении на основной отпайке и напряжение =400 В при холостом ходе.

Коэффициент трансформации .

,

где – число витков первичной обмотки; – число витков вторичной обмотки.

Если =6,300 В, то необходимо увеличить коэффициент К.

Из соотношения необходимо увеличить число витков . Переключатель П устанавливается в положение +5%.

Если =5700 В, то необходимо уменьшить коэффициент К, т.е. уменьшить число витков . Переключатель П устанавливается в положение -5% и вторичное напряжение, равное станет равно 400 В.

Переключение ответвлений производится только после отключения трансформатора от сети и называется «переключение ответвлений обмоток без возбуждения (ПБВ)».

Более совершенным является регулирование под нагрузкой (РПН), осуществляемое без разрыва цепи. Переключатель помещается в общем баке трансформатора над магнитопроводом и приводится в действие электродвигателем. В комплект РПН входят переключающее устройство и блок автоматического управления приводом.

В табл. 2.18 представлены данные мощностей силовых трансформаторов.

Таблица 2.18

Шкала номинальных мощностей силовых трансформаторов

Номинальные мощности, кВ·А Габариты
I
II
III
IV

Отношения мощностей: 16/10=1,6; 25/16=1,6; 40/25=1,6; 63/40=1,6.

Приключательные пункты

Приключательный пункт представляет собой высоковольтную ячейку, предназначенную для подключения питания и защиты электрооборудования экскаваторов, драг и других технологических машин открытых горных работ в электрических сетях напряжением 6 и 10 кВ. Внутри ячейки установлены высоковольтные аппараты: разъединитель, вакуумный выключатель, трансформатор тока, измерительный трансформатор напряжения, предохранители. Напряжение 6 кВ от ВЛ-6 через проходные изоляторы в крыше подается на неподвижные контакты разъединителя РВЗ (рис. 2.69, 2.70).

Рис. 2.69. Схема включения защит в ЯКНО:

Р – разъединитель; В – выключатель; ТТА, ТТС – трансформаторы тока в фазах

А и С; НОМ-6 – трансформатор напряжения однофазный; 1 – пружина выключателя; 2 – защелка; 3 – катушка напряжения 100 В; 4 – катушка токовая, запитана от ТТ

фазы С; 5 – катушка токовая, запитана от ТТ фазы А; 6 – пружина катушки

напряжения; 7 – контакт реле земляной защиты

С 1975 г. изготавливались приключательные пункты с масляными выключателями типа ЯКНО-6(10) (ячейка комплектная наружная одиночная), позднее, с 2000 г. с вакуумным выключателем типа КРУПЭ (комплектное распределительное устройство передвижное экскаваторное).

В настоящее время изготавливается ячейка высоковольтная приключательная типа ЯВП-6 УХЛ1, содержащая автогазовый выключатель нагрузки ВНПР-10/630-2бз с двумя комплектами заземляющих ножей, вакуумный выключатель ВБЭМ-10-12,5/800, трансформатор собственных нужд ОЛС-1,25/6, предохранитель токоограничивающий ПКТ-6-2, ограничитель перенапряжений ОПН-КС-6/4,7. Габаритные размеры 770 х 1425 х 2330 мм. (ширина х глубина х высота). Масса 580 кг. Степень защиты IP-55. Коммутационный ресурс вакуумного выключателя 50 тыс. циклов ВО при номинальном токе 800 А. Изготовитель ЯВП-6/300 компания «Объединенная энергия» г. Москва.

Защиты в ЯКНО-6(10)

В ЯКНО имеется 4 вида защит:

Работа нулевой защиты. При включении разъединителя Р измерительный трансформатор напряжения НОМ-6 выдает 100 В и катушка 3 втягивает свой сердечник, сжимая пружину 7 под сердечником. Пока есть напряжение в сети, эта пружина сжата. Если напряжение в сети исчезнет, то пружина выталкивает сердечник из катушки, который ударяет по защелке 2 и взведенная пружина 1 выключателя отключает выключатель В.

Зачем нужно отключать выключатель, когда исчезает напряжение в сети? Если этого не сделать, то при появлении напряжения 6 кВ и включенном выключателе сетевой двигатель начнет вращаться, на генераторах появится напряжение и механизмы подъема, тяги (напора), вращения начнут движение без машиниста, что приведет к их поломке. Такая защита установлена и на двигателях подъемных машин, компрессоров и других механизмов во всем мире.

Работа минимальной защиты. Если напряжение в сети понизится до 0,6 (0,6·6000 = 3600 В), то катушки напряжения 3 не в силах удержать сердечник и пружина его выталкивает, он ударяет по защелке и выключатель отключается.

Зачем нужна эта защита? При уменьшении напряжения в сети ток в обмотке статора сетевого двигателя увеличивается выше номинального значения и двигатель начнет перегреваться и может сгореть. Защита своевременно его отключит.

Работа максимальной токовой защиты. При нормальном режиме работы ток в фазах сети и кабеле равен номинальному и во вторичной обмотке трансформатора (не более 5 А). Токовые катушки слабо втягивают свои сердечники, и они остаются неподвижными. При коротком замыкании в кабеле и в сетевом двигателе ток увеличивается в десятки раз и более, во столько же раз увеличивается ток в токовой обмотке, сердечник резко втягивается, ударяет по защелке и выключатель отключает место короткого замыкания. Время отключения составляет порядка 1 секунды. Если не отключить ток быстро, то возможно загорание поврежденного кабеля.

Работа земляной защиты. От вторичных обмоток трехфазного измерительного трансформатора напряжения типа НТМИ-6 запитываются:

1. Катушка нулевой защиты напряжением 100 В.

2. Реле земляной защиты РЗЗ.

При нормальном режиме (нет обрыва ни одной фазы сети) напряжение на реле РЗЗ отсутствует. При замыкании какой-либо фазы на землю появляется напряжение на концах вторичной обмотки, соединенной в открытый треугольник, реле РЗЗ включается и размыкает свой контакт в цепи нулей катушки, которая, обесточившись, отключает выключатель.

2.13. Контрольные вопросы к главе 2

1. Назначение разъединителя. Почему нельзя отключать нагрузку разъединителем? Процесс образования «взрыва».

2. Конструкция разъединителя для внутренней установки. Основные детали, привод. Расшифруйте РВ-6/400.

3. Конструкция разъединителя для наружной установки. Основные детали, привод. Расшифруйте РЛН-10/600.

4. Конструкция разъединителя с заземляющими ножами. Порядок работы с ним. Блокировка. Условное обозначение разъединителя с заземляющими ножами. Расшифруйте РВЗ-6/600.

5. Условное обозначение трехфазного разъединителя в трехлинейном и однолинейном изображениях с заземляющими ножами и без них.

6. Порядок отключения электроустановки для ремонта.

7. Устройство, принцип действия, назначение и условное обозначение выключателя нагрузки. Расшифровка ВНА-10/630.

8. Устройство и принцип действия масляного выключателя ВМБ-10. Масляные выключатели горшкового типа ВМП-10/630.

9. Устройство и принцип действия воздушных и электромагнитных выключателей.

10. Устройство и принцип действия элегазовых выключателей.

11. Устройство и принцип действия вакуумных выключателей.

12. Устройство однофазного измерительного трансформатора напряжения НОМ-6, НОМ-10, НОМ-35, НОЛ-6.

13. Устройство трехфазного трансформатора напряжения типа НТМИ-6.

14. Приборы и реле, подключаемые к НОМ-6.

15. Устройство трансформатора тока. Схема подключения амперметра. Шкала трансформатора тока 1000/5. Одновитковые и многовитковые трансформаторы тока.

16. Встроенные трансформаторы тока. Условное обозначение трансформатора тока.

17. Устройство, назначение высоковольтных предохранителей. Условное обозначение.

18. Устройство и назначение разрядников трубчатых и подстанционных. Условное обозначение.

19. Устройство и назначение ограничителей напряжений (ОПН). Условное обозначение.

20. Устройство и назначение короткозамыкателей и отделителей. Схема их совместной работы. Условное обозначение.

Глава 3. Электрические сети

Как увеличить выходное напряжение трансформатора?

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Увеличение мощности электронного трансформатора

    Во время экспериментов с электронным трансформатором кажется, что эта схема резиновая, сколько не нагружай, а ей всё равно. В этой статье я покажу как можно выжать пол киловатта чистой мощности от вот этой простой схемы.

    На рисунке представлена классическая схема электронного трансформатора. Это полумостовой автогенераторный сетевой импульсный источник питания.

    В схеме имеется два трансформатора, силовой и трансформатор обратной связи.

    Мощность схемы зависит от нескольких компонентов:

    • Входного выпрямителя;
    • Силовых ключей;
    • Ёмкостей полумоста;
    • Силового импульсного трансформатора.

    Если заменить их на более мощные, то удастся добиться большой выходной мощности в целом.

    Активными компонентами нашей схемы являются транзисторы. Это высоковольтные ключи обратной проводимости. Запуск схемы осуществляет симметричный динистор DB3.

    Самые ходовые, бюджетные и мощные высоковольтные транзисторы, которые мне известны, это MJE13009 их и будем использовать, но схема не сияет высоким кпд, и одной пары ключей для наших целей может быть недостаточно, поэтому в схему добавлена вторая пара, в итоге схема приобрела такой вид:

    Мощные резисторы в эмиттерных цепях являются выравнивающими, помогают равномерно нагрузить все транзисторы.

    Силовой трансформатор тороидальный — намотан очень давно для какого-то проекта, сердечник крутой от эпкос, марка N87. Габаритная мощность трансформатора более 1000 ватт.

    Так, как преобразователь автогенераторного типа, а рабочая частота сильно зависит от некоторых параметров и крайне нестабильна, точно рассчитать силовой трансформатор дело нелегкое, но примерный расчет можно сделать по специализированным программам зная начальную частоту преобразователя с небольшой нагрузкой, в моем случае 22 кгц.

    Намоточные данные моего трансформатора приводить думаю нет смысла, так как у вас наверняка будет другой сердечник и параметры намотки будут иными.

    Диодный мост — в виде 10-и амперной диодной сборки с обратным напряжением 1000 Вольт, греется, но не сильно, при долговременной работе стоит установить его на радиатор.

    Трансформатор обратной связи — ферритовое колечко размером 18х12х7,5мм.

    Кольцо я выдрал из блока питания компьютера, но тут просьба быть более внимательным — такие кольца стоят во входной части блока на линии 220 вольт, а не на выходе, желто белые, зелено-синие и прочие кольца, которые стоят на выходе блока питания сделаны из порошкового железа и для наших целей не подойдут, нам нужно именно ферритовое кольцо. Я использовал также и иные ферритовые кольца с проницаемостью от 1500- до 3000 работали без нареканий.

    Базовые обмотки идентичны и содержать по 3 витка проводом 0,5 мм, обмотка обратной связи – всего один неполный виток проводом 1,25мм.

    У многих возникают вопросы с фазировкой обмоток трансформатора обратной связи, если начало и конец обмоток перепутать, ничего не заработает, я неоднократно рассказывал и показывал как все подключается, но вопросы все ровно возникают, поэтому если кто решит повторить, просто собирайте все по плате из архива, и внимательно посмотрите на эти фото.

    Естественно и на схеме и на плате точками отмечены начала всех обмоток.

    Силовые транзисторы устанавливают на общий теплоотвод, изолируют их подложки например слюдяной прокладкой или более современным теплопроводящим изолирующим материалом.

    • Первый запуск всегда делается через страховочную сетевую лампу 40-60 ватт;
    • Никогда не дотрагивайтесь платы во время работы;
    • Никогда не замыкайте выход электронного трансформатора , он попросту взорвется, так как схема не имеет никаких защит помимо входного предохранителя но тот сгорает только после того как лопнут ключи.

    Напряжение на выходе нашего трансформатора переменное, я выпрямил в нечистую постоянку для более менее адекватных замеров, но в выпрямителе естественно у нас будут дополнительные потери.

    Сам выпрямитель STTH6003 под корпусом два мощных диода по 30 ампер соединенных катодами, такие применяются в сварочных инверторах. Выпрямитель закрепил на радиатор.

    Нагружать будем старыми добрыми и чертовски мощными лампами от кинопроектора, и еще чем нибудь. Так как эти лампы в холодном состоянии имеют очень малое сопротивление нити накала, а следовательно в начальный момент будут потреблять от нашего блока питания токи гораздо больше номинального, ко входу схемы я прицепил мощный термистор, он ограничит ток пока лампы не разогреются.

    Максимум, что мне удалось получить с такой нагрузкой это 460Ватт чистой выходной мощности, учитывая потери в ваттметре, а также в выпрямителе и на проводах я думаю, что не у кого не возникнет сомнений, что пол киловатта схема выдаст.

    Схема очень простая, не самая капризная. Нагрузочная способность на высоте, но повторить ее особенно начинающим не рекомендую, не смотря на то, что такие схематические решения используются в промышленных блоках питания для офисных низковольтных галогенных ламп.

    Для любых предложений по сайту: [email protected]