Как узнать напряжение стабилизации стабилитрона?

Как проверить стабилитрон (диод Зенера) на напряжение стабилизации и работоспособность. В этой статье предлагаю Вам разобраться с вопросом – как можно достаточно простым методом проверять

Как узнать напряжение стабилизации стабилитрона?

Как проверить стабилитрон (диод Зенера) на напряжение стабилизации и работоспособность.

В этой статье предлагаю Вам разобраться с вопросом – как можно достаточно простым методом проверять стабилитроны (которые также называются диодами Зенера) на их напряжение стабилизации, а также на пригодность вообще. Напомню, что стабилитрон представляет собой обычный полупроводник, у которого есть некоторое свое стабильное напряжение, что присутствует между катодом и анодом, при обратном включении к источнику постоянного напряжения, при электрическом пробое этого полупроводника.

Если взять самый обычный диод, то при обратном включении между анодом и катодом будет величина постоянного напряжения равная напряжению источника этого питания. При таком подключении диод подобен обычному диэлектрику, который через себя не пропускает ток (точнее ток есть, называемый током утечки, но он очень мал).

И это при условии, что данный диод рассчитан на обратное напряжение больше, чем на него подается. В противном случае (если подаваемое напряжение будет больше того, на какое рассчитан диод) этот диод просто пробьется, выйдя из строя. При этом скорее всего он либо начнет электрический ток проводить в обе стороны, как обычный проводник, либо станет диэлектриком, ток проводить уже вовсе не будет.

У стабилитрона же, в отличие от обычного диода, имеется более низкое обратное напряжение, при котором этот стабилитрон пробивается. И этот пробой не выводит стабилитрон из строя, а напряжение на нем стабилизируется на определенном уровне. У разных стабилитронов это напряжение стабилизации может отличаться, и оно соответствует конкретной маркировке этих стабилитронов. Естественно, когда у стабилитрона возникает пробой, то через него начинает течь ток. И чем больше мы будем подавать напряжение на этот стабилитрон, тем больше будет сила тока, протекающая через него. Напряжение же будет меняться очень незначительно.

При прямом же включении, что у обычного диода, что у стабилитрона, будет происходить практически одно и тоже. А именно, до напряжения где-то 0,6 вольт полупроводник будет закрыт. Но, как только подаваемое напряжение превысит это значение, то через полупроводник начнет течь электрический ток. Чем больше ток будет протекать через полупроводник, тем больше будет падение напряжения на нем, в пределах где-то от 0,6, до 1,2 вольта. К примеру, у диодов Шоттки падение напряжения при прямом включении имеет минимальное значение – от 0,2 В. Если при проверке, хоть диода, хоть стабилитрона, при прямом включении мы не увидим этого падения напряжения (0,6 В), то скорей всего диод пробит и уже не пригоден к работе.

Ну и теперь ближе к теме о простом способе проверки стабилитронов на их целостность и напряжение стабилизации. Тут все просто. Нам нужен обычный источник постоянного напряжения, у которого это самое напряжение должно быть больше напряжения стабилизации проверяемого стабилитрона. Иначе при более низком напряжении стабилитрон просто не пробьется и не выйдет на свой рабочий номинальный режим стабилизации. Нужно учесть, что мощность блока питания может быть маленькой, поскольку в режиме стабилизации стабилитрон через себя пропускает незначительные токи (до 100 мА).

Если Вы планируете таким способом проверять стабилитроны с достаточно большим напряжением стабилизации, то и блок питания нужен с соответствующим постоянным напряжением. Хотя не всегда под рукой можно найти такие БП с относительно большим выходным напряжением. Простым выходом из такой ситуации будет использования обычного дешевого повышающего напряжение DC-DC модуля. На вход этого модуля можно подавать любое стандартное напряжение, ну а на его выходе уже можно получать более высокое напряжение. Причем, как я заметил ранее, сила тока при проверки будет крайне незначительна.

Кроме блока питания нам еще понадобится обычный вольтметр постоянного тока, которым мы и будем оценивать величину напряжения стабилизации диода Зенера (стабилитрона). Подойдет абсолютно любой вольтметр, лишь он мог показывать постоянное напряжение от 0 до 50 и более. Подойдет самый простой мультиметр.

Ну, и еще немаловажная деталь, это обычный постоянный резистор с сопротивлением где-то около 2 килоом, хотя можно от 1 кОм до 10 кОм. Роль этого сопротивления очень простая. Он ограничивает силу тока, который будет протекать через проверяемый стабилитрон. Что предотвратит полупроводник от случайного выхода из строя в случае, когда подаваемое напряжение будет большое, а напряжение стабилитрона будет мало. Сопротивление же ограничивать силу тока при любых типах стабилитрона, тем самым обезопасит процесс измерения и проверки. По мощности подойдет самый обычный резистор на 0,125 Вт.

Ну, и вот сама схема, которая и позволяет делать проверку стабилитронов:

Тут все просто. Плюс блока питания подключается через резистор к катоду стабилитрона, что соответствует обратному включению, а минус БП подается на анод проверяемого полупроводника. Щупы вольтметра прикладываются параллельно стабилитрону. На экране вольтметра мы увидим то самое напряжение стабилизации, на которое и рассчитан данный стабилитрон. Когда же мы перевернем стабилитрон и подсоединяем его прямым включением, то есть плюс БП к аноду полупроводника, а минус БП к катоду стабилитрона. То на вольтметре мы должны увидеть значение около 0,6 вольт, что свидетельствует о полной работоспособности данного полупроводника. Прямым включением, этим способом, можно проверять и обычные диоды. При обратном подключении диода вольтметр должен показывать напряжение блока питания, поскольку диод будет полностью закрыт.

Видео по этой теме:

Как узнать напряжение стабилизации стабилитрона?

Про бетон, бетонные конструкции и работы


Внешний вид стабилитрона

Что такое стабилитрон

Практически ни один стабилизатор напряжения не обходится без этого полупроводника. По внешнему виду его легко спутать с диодом. Узнавать, какой из элементов стабилизирует разность потенциалов, можно по маркировке. Диод Зенера (стабилитрон) имеет высокое сопротивление, до тех пор, пока не наступает пробой. Поданное обратное смещение вызывает пробой перехода, и ток начинает быстро увеличиваться, а сопротивление уменьшается в интервале от сотен Ом до его дольных величин. Такой режим работы даёт возможность с определённой точностью поддерживать неизменное значение напряжения на элементе.

Главная задача полупроводника – выполнять стабилизацию напряжения. Выпускают в серию детали, рассчитанные на поддержание от 1,8-400 В. Включение радиодетали в схему выполняется параллельно нагрузке.


Условное графическое обозначение элемента

Внимание! Двухполюсник имеет выводы: катод и анод. Если рассматривать область p-n перехода, то вывод, подключенный к p-области, это анод, а к n-области – это катод.

Полупроводниковые элементы, которые составлены из двух встречно направленных стабилитронов, называют двусторонними (двуханодными).


Двусторонний стабилитрон

Классификация этих двухполюсников по функциональному назначению выглядит следующим образом:

  • детали общего применения (дискретные), по мощности: 0-0,3; 0,3-5; 5-10 Вт и выше;
  • прецизионные элементы, имеющие в своей структуре сложную микросхему (скрытая структура);
  • ограничительные стабилитроны, предназначенные для подавителей помех.

Последние предназначены для кратковременного пропускания импульсного тока величиной до сотни ампер. Длительная работа с большими токами вызывает перегрев детали и тепловой пробой.

Внимание! Кремниевый диод (стабилитрон), включенный в схему в обратном направлении, имеет три варианта пробоя: туннельный, лавинный и вызванный тепловой неустойчивостью. Их конструкция подразумевает наступление первых двух пробоев до того, как произойдёт тепловое разрушение перехода.


Схема включения и вольт-амперная характеристика (ВАХ) Zener diode

Схема устройства для проверки стабилитронов

Как видно, схема проста. Напряжение с трансформатора с двумя вторичными обмотками 24V, выпрямляется и фильтруется для получения постоянного напряжения около 80 В, затем поступает на стабилизатор напряжения, образованный элементами (R1, R2, D1, D2 и Q1), который снижает напряжение до 52V, чтобы избежать превышения максимального предела рабочего напряжения микросхемы LM317AHV.

Обратите внимание на буквенный индекс микросхемы. У LM317AHV входное напряжение, в отличии от LM317T, может достигнуть максимума 57V.

На LM317AHV собран генератор постоянного тока, куда добавлен выключатель (S2) совместно с резистором (R4), чтобы выбрать два тестовых режима (5 мА и 15 мА) в качестве источника тока для испытуемого стабилитрона.

Этот тестер легко собрать из стандартных компонентов. Готовый импульсный блок питания от какого-нибудь DVD или тюнера спутниковой системы, а вольтметр либо в виде промышленного модуля на микроконтроллере, либо взять мультиметр D-830 .

Читать также: Стандартный ряд метрических резьб

Немного теории

Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно :-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока, напряжение, частота сигнала и другие его характеристики. Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение. От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон. Иногда его еще называют диодом Зенера. На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод, а другой вывод – анод.

Стабилитроны выглядят также, как и диоды. На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза

Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.

Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Читать также: Разводомер для ленточных пил

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:

Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.

Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:

5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой

Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и диод! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим мультиметр на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого PN-перехода.

Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.

Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:

где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения. Здесь все элементарно и просто:

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл

Проверяем стабилитрон — простая приставка к мультиметру

Радиолюбители иногда затрудняются определить основной параметр попавшего к нему стабилитрона – его фактическое напряжение стабилизации. Для этого имеется несколько причин. Отсутствие маркировки (особенно на современных миниатюрных импортных деталях), нестабильность параметров детали даже в одной партии, в отдельных случаях для расшифровки маркировки требуется найти определенный справочник. Иногда нужно просто отличить стабилитрон от обычного диода, так как оба элемента имеют похожий внешний вид.
На практике, отличить стабилитрон от обычного диода и узнать его рабочее напряжение, можно с помощью приставки к мультиметру. Кроме того, при выполнении ремонтных работ часто бывает необходимо проверить стабилитрон на пригодность. В этой ситуации, в большинстве случаев, может оказать помощь простая приставка к мультиметру (вольтметру), предлагаемая к рассмотрению.

Основным достоинством этой приставки, является возможность стабилизации малых токов, а это основной диапазон стабилитронов малой мощности применяемых сегодня.

Предлагаемая приставка позволяет проверять напряжение стабилизации деталей в пределах 1…25 В, при неизменном рабочем токе стабилизации, который можно установить вручную в диапазоне от 2,0 до 100 мА.
Проверить работоспособность полупроводников можно с помощью универсального ESR тестера радиокомпонентов. Однако в нем стабилитроны проверяются как обычные диоды, поэтому тестер не поможет вам определить напряжение стабилитрона. Для этого можно будет использовать приставку, собранную по ниже приведенной схеме.

Схема приставки для проверки стабилитронов, выполнена на базе типовой схемы стабилизатора тока, с использованием микросхемы прецизионного термостабильного источника опорного напряжения TL431.
Микросхема поддерживает на резисторах (R2 + R3) фиксированное напряжение 2,5 В, поэтому ток через этот суммарный резистор всегда будет постоянным и определяться соотношением 2,5 / (R2 + R3). Ток через исследуемый стабилитрон VD, при изменении входного напряжения, также будет постоянным, но уменьшенным на величину тока базы. Чем выше будет коэффициент передачи тока транзистора, тем более эти токи будут приближены по величине.
В схеме использован транзистор ВС637 c рабочим током КЭ до 500мА и допустимым напряжением до 60В. Возможна его замена на другой NPN транзистор с близкими характеристиками.
Минимальный рабочий ток микросхемы VD1 равен 1мА. Резистор R1 рассчитывается для обеспечения этого тока и тока базы.
Резистор R2 определяет максимально допустимый ток через стабилитрон, а переменный резистор R3 позволяет его регулировать в процессе измерений.

Источником напряжения для приставки может быть лабораторный блок питания с регулируемым выходным напряжением от 3 до 30В.
При отсутствии БП можно использовать маломощный выпрямитель с выходным напряжением до 30В.

При желании, можно изготовить автономную приставку, для чего достаточно дополнить схему регулируемым блоком преобразования напряжения (покупным или изготовленным самостоятельно) используемой батареи до входного напряжения приставки. Интернет богат предложениями.

Кроме проверки стабилитронов, на приставке можно проверить диоды или светодиоды. Подключив к приставке, можно определить рабочее напряжение светодиода, подобрать экземпляр с минимальным напряжением или максимальной яркостью.
Всем известно, что яркость светодиода зависит от протекающего через него тока. Но ток светодиода очень зависит от питающего напряжения, что особенно заметно в изменениях яркости при нестабильности питания. Поэтому, небольшое повышение питающего напряжения часто приводит к такому увеличению тока через светодиоды, что они перегорают. Для предотвращения этого, светодиоды подключают через драйверы, которые являются стабилизаторами тока. Рассматриваемая приставка для проверки стабилитронов, как раз и выполнена на базе схемы стабилизатора тока, поэтому дополнительно может полноценно исполнять роль драйвера для светодиодов.

Изготовление приставки

1. Монтаж схемы
Схему приставки предварительно соберем на универсальной монтажной плате из подобранных согласно схеме деталей.
Подключаем схему к регулируемому блоку питания (в данном примере использован БП с выходным напряжением 1…25В).
К контрольным точкам для подключения стабилитрона присоединяем мультиметр в режиме миллиамперметра.
Используя переменный резистор R3, проверяем диапазон регулировки тока приставки на разных режимах, изменяя входное напряжение от минимума до максимального значения.
При необходимости корректируем номиналы резисторов.

2. Изготовление корпуса приставки
В качестве корпуса можно подобрать небольшую пластмассовую коробочку. В данном примере использован отработанный корпус кнопки включения сигнализации. Его размеры 75 х 55 х 30 мм, но объема достаточно для размещения всего комплекта автономного устройства.
Освобождаем корпус от ненужных деталей и по его размерам, размечаем и отрезаем из фольгированного текстолита контактную пластину для подключения контролируемых деталей.

Для регулировки тока стабилизации на переменный резистор установим рукоятку. Под нее можно установить шкалу и разметить ее при тарировании приставки. Но необходимо учесть, что шкала тока нелинейная и при максимальных токах деления шкалы расположены плотно, да и размеры корпуса минимальны.

При желании расширить шкалу в диапазоне максимальных токов, для большей точности установки, можно дополнить приставку дополнительным переменным резистором на 47Ом, включенным последовательно с R3.

В приведенной приставке, для определения установленного тока, под рукояткой регулировки приклеено кольцо от барабана механического счетчика. При тарировании приставки, для каждой цифры (и положения между цифрами) показания тока записывались в таблицу для дальнейшего использования. Риской для отсчета служит канавка раздела в контактной пластине.

4. Проверка стабилитрона (порядок измерения)
К испытательным контактам для подключения проверяемого стабилитрона присоединяем мультиметр в режиме миллиамперметра. На тарированной приставке переходим далее.
С помощью переменного резистора R3 устанавливаем ток стабилизации для проверяемого стабилитрона (например, 5мА).
Переключаем мультиметр в режим вольтметра и устанавливаем на БП минимальное напряжение.
Подключаем проверяемый стабилитрон и начинаем плавно повышать напряжение на входе приставки. Когда показания прибора перестанут изменяться, вольтметр покажет напряжения стабилизации для данного стабилитрона.

5. Проверка стабилитрона (проверка работы)
Протестируем стабилитрон Д814А (по справочнику — номинальный рабочий ток стабилизации 5 мА, возможный диапазон — 3…40мА, напряжение стабилизации – 7,0…8,5В).
Установим ток стабилизации для проверяемого стабилитрона 5мА.

Тот же стабилитрон, но подключен как диод в прямом направлении. На экране прибора отражается падение напряжения на p-n переходе (примерно 0,6…0,7В).

Если ток не протекает через стабилитрон в обоих направлениях, то его напряжение стабилизации превышает максимальное входное напряжение приставки.
Возможно это диод, включенный в обратном направлении. Тогда перевернуть его и проверить вновь на падение напряжения в p-n переходе.
Если напряжение будет близким к нулю, то стабилитрон пробит.
Определим напряжение стабилизации на паре других стабилитронов, не имеющих маркировки.

Как проверить стабилитрон мультиметром

Название полупроводникового элемента, похожего на диод, говорит само за себя. Он позволяет стабилизировать уже сглаженное напряжение за счёт своих физических особенностей. Зачастую возникает такая необходимость, как проверка стабилитрона. Нужно узнать исправность детали, когда не обеспечивается стабилизация напряжения в цепи, где она установлена.

Что такое стабилитрон

Практически ни один стабилизатор напряжения не обходится без этого полупроводника. По внешнему виду его легко спутать с диодом. Узнавать, какой из элементов стабилизирует разность потенциалов, можно по маркировке. Диод Зенера (стабилитрон) имеет высокое сопротивление, до тех пор, пока не наступает пробой. Поданное обратное смещение вызывает пробой перехода, и ток начинает быстро увеличиваться, а сопротивление уменьшается в интервале от сотен Ом до его дольных величин. Такой режим работы даёт возможность с определённой точностью поддерживать неизменное значение напряжения на элементе.

Главная задача полупроводника – выполнять стабилизацию напряжения. Выпускают в серию детали, рассчитанные на поддержание от 1,8-400 В. Включение радиодетали в схему выполняется параллельно нагрузке.

Внимание! Двухполюсник имеет выводы: катод и анод. Если рассматривать область p-n перехода, то вывод, подключенный к p-области, это анод, а к n-области – это катод.

Полупроводниковые элементы, которые составлены из двух встречно направленных стабилитронов, называют двусторонними (двуханодными).

Классификация этих двухполюсников по функциональному назначению выглядит следующим образом:

  • детали общего применения (дискретные), по мощности: 0-0,3; 0,3-5; 5-10 Вт и выше;
  • прецизионные элементы, имеющие в своей структуре сложную микросхему (скрытая структура);
  • ограничительные стабилитроны, предназначенные для подавителей помех.

Последние предназначены для кратковременного пропускания импульсного тока величиной до сотни ампер. Длительная работа с большими токами вызывает перегрев детали и тепловой пробой.

Внимание! Кремниевый диод (стабилитрон), включенный в схему в обратном направлении, имеет три варианта пробоя: туннельный, лавинный и вызванный тепловой неустойчивостью. Их конструкция подразумевает наступление первых двух пробоев до того, как произойдёт тепловое разрушение перехода.

Порядок проверки

Проверку производят обычным тестером, переключив прибор в диапазон для измерений диодов или сопротивления.

Поэлементное описание проверки имеет вид:

  • на приборе выбирается режим измерения сопротивления;
  • щупы тестера подключаются к выводам детали;
  • оцениваются показания прибора, высвечиваемые на дисплее.

Когда собственный источник питания мультиметра подключен плюсовым щупом к аноду, то на дисплее можно зафиксировать показания сопротивления от нескольких долей Ома до его единиц. После замены местами измерительных щупов при исправном элементе получают бесконечно большое сопротивление.

Помня о том, что стабилитрон ведёт себя, как простой диод, устанавливают интервал измерений в кОм. В этом случае сопротивление исправной радиодетали доходит до сотен кОм.

Информация. Показания, выданные на дисплей тестером, часто вводят в заблуждение проводящего измерения. Одинаково высокое сопротивление при различных подключениях щупов не всегда означает пробой элемента. Поданное для измерений напряжение внутреннего источника может превысить номинальное напряжения пробоя, тогда полученные результаты будут ложными.

Как проверить стабилитрон мультиметром на плате

Когда нет возможности освободить оба вывода элемента для измерений, как проверить стабилитроны? Желательно выпаять хотя бы одну из ножек (выводов) полупроводникового прибора. Таким образом разорвать цепь схемы на плате, куда впаян полупроводник. Это позволит избежать искажение показаний при измерениях. Неточность может возникнуть от влияния других элементов, входящих в схему. Кроме того, нужно обесточить плату, на которой находится проверяемый элемент.

Можно ли проверить деталь, не выпаивая

Выпаивать полупроводниковую деталь не всегда удобно, особенно, если платы имеют двухсторонний монтаж схемы. Проверка стабилитронов мультиметром без демонтажа вполне возможна. Если показания измерительного прибора не определяют повреждения, то их можно считать реальными. При результатах, показывающих обрыв, можно быть уверенными, что это тоже факт. Но, когда измерения регистрируют пробой – низкое сопротивление при любой полярности подключения щупов, то это не всегда так. В этом случае деталь нужно выпаивать.

Осторожно. Измерения тестером с внутренним напряжением, большим напряжения пробоя стабилитрона, может привести к реальному пробою. Для проверки таких элементов удобно пользоваться стрелочными аналоговыми приборами. Напряжение питания у них – не более 3 В.

Как проверить двусторонний стабилитрон

Бывает, что после выпаивания из платы полупроводникового элемента, при изменении полярности на щупах, сопротивление оказывается большим в обоих случаях. Это не обязательно говорит об обрыве. Проверяемый компонент схемы может быть двусторонним стабилитроном. Как проверить стабилитрон мультиметром?

Чтобы протестировать его работоспособность, нужно:

  • увеличить прилагаемое напряжение измерения;
  • менять полярность, подаваемую щупами тестера на выводы;
  • измерять токи и сравнивать ВАХ исследуемой детали.

Совокупность действий поможет определить, исправен или нет такой зенер диод. Зная о том, что в такой радиодетали катоды внутри соединены между собой, необходимо собрать схему.

В схему входят следующие компоненты:

  • тестер;
  • резистор сопротивлением 1 кОм (R);
  • ИП до 30 вольт.

Для измерения все вместе соединяется в схему:

  • подключают резистор к « + » источника питания;
  • стабилитрон присоединяют на второй контакт резистора;
  • щуп тестера подсоединяют с свободному выводу R и клемме « — » ИП;
  • прибор включается в разрыв: « + » ИП и « — » ИП;
  • на приборе выбирается наиболее подходящий режим.

При проверке зинер диода с напряжением стабилизации схема будет рабочей, если, изменяя Uпит в границах 13-30 В, на дисплее прибора сохраняется в пределах 12 В, даже при смене полярности.

Важно! Никакой измерительный прибор не может гарантировать, что полученные результаты действительно верны. Для проверки нужно включить в схему полупроводник, подать питание и провести измерения, которые выявляют неисправную деталь.

Основные неисправности стабилитрона

Работоспособность детали, расположенной в блоках аппаратуры, можно выявить, зная основные неисправности. К ним можно отнести следующие повреждения или отклонения от нормы:

  • пробой перехода;
  • обрыв;
  • неправильное напряжение;
  • неточный ток.

Если первые два пункта вопросов не вызывают, то вторые две позиции относятся к неявным повреждениям.

Внимание! Когда измеренное мультиметром на диоде зенера падение напряжения в прямом направлении совпадает с заявленным значением, это означает, что элемент исправен.

При проверке стабилитрона подключают плюсовой щуп к аноду, а отрицательный – к катоду. В режиме проверки диодов на экране отобразится величина падения напряжения на тестируемом элементе. При переполюсовке щупов на дисплее не будет значений, высветится «1».

При пробое перехода при прямом и обратном прикасании измерительных щупов на дисплее тестера будут высвечиваться цифры. Когда в режиме проверки диода на тестере присутствует звуковое оповещение (пищалка), то оно сработает.

При обрыве перехода измерения ничего не покажут при любом прикладывании щупов тестера. В этом случае даже без выпаивания стабилитрона из платы можно определить его неисправность.

Неправильное напряжение стабилизации определяется только при включении питания схемы. В режиме вольтметра щупами касаются выводов детали и измеряют параметр. В случае отклонения от необходимой величины стабилитрон заменяется.

При определении исправности элемента с напряжением стабилизации до 20-30 В пользуются простым методом. Для этого нужно собрать небольшую макетную модель для испытаний, в неё входят:

  • панель для закрепления микросхем (любая);
  • ограничивающий резистор сопротивлением 4,7 кОм, мощностью до 0,25 Вт;
  • источник питания: подойдёт блок питания от ноутбука, в идеале – источник с регулировкой выходного напряжения.

Панель от микросхемы поможет закреплять в её пазах любой проверяемый элемент.

Осторожно. При подключении в схему проверяемого полупроводника подключают «плюс» к катоду, «минус» – к аноду. Неправильное включение выведет испытуемую деталь из строя.

Стабилизация напряжения с использованием стабилитронов – успешное решение в электронных схемах. Правильное тестирование стабилитрона с помощью мультиметра поможет определить неисправную деталь и сберечь схему от повреждения.

Видео

Стабилитрон

Само название этого прибора “стабилитрон” созвучно слову стабильность или постоянство чего — либо или в чем — либо. В жизни человека очень важна стабильность, стабильность в зарплате, цены в магазине и прочее. В электронике стабильность напряжения питания очень важный, основной параметр, который при настройке или ремонте электронного оборудования проверяют в первую очередь. Напряжение в электрической сети может меняться в зависимости от общей нагрузки, качества электроснабжающих сетей, и еще многих других факторов, но напряжение питания электронных устройств, при этом, должно оставаться неизменным с определенной заданной величиной.

И так, что же такое стабилитрон.

Википедия, тебе даст такое определение:

«Полупроводнико́вый стабилитро́н, или диод Зенера — это полупроводниковый диод, работающий при обратном смещении в режиме пробоя. До наступления пробоя через стабилитрон протекают незначительные токи утечки. «

Все правильно, но слишком заумно.

Я попробую сказать проще

Стабилитрон — это такой полупроводниковый прибор, который стабилизирует напряжение.

Считаю, что на первых порах этого определения достаточно, (а как он стабилизирует напряжение, я расскажу ниже)

Принцип работы стабилитрона

Уважаемый читатель на этом рисунке изображен принцип работы стабилитрона.

Представь, что в некую емкость заливают воду, уровень воды в емкости, должен быть строго определенным, для того чтобы емкость не переполнилась в ней сделана переливная труба по которой вода превышающая заданный уровень будет выливаться из емкости.

Теперь от “сантехники” перейдем к электронике.

Обозначение стабилитрона на принципиальной схеме такое – же, как и у диода, отличие “черточка” катода изображается как буква Г.

Обозначение стабилитрона на схеме

Стабилитрон работает только в цепи постоянного тока, и пропускает напряжение в прямом направлении анод – катод так же — как и диод. В отличи от диода у стабилитрона есть одна особенность, если подать ток в обратном направлении катод – анод, ток через стабилитрон течь не будет, но ток в обратном направлении не будет течь только до тех пор, пока напряжение не превысит заданное значение.

Что является заданным значением напряжения для стабилитрона?

Стабилитрон имеет свои параметры – это напряжение стабилизации и ток. Параметр напряжение — указывает при какой величине напряжения стабилитрон будет пропускать ток в обратном направлении, параметром ток – задана сила тока, при которой стабилитрон может работать не повреждаясь.

Стабилитроны изготавливают для стабилизации напряжения различной величины, например, стабилитрон с обозначением V6.8 будет стабилизировать напряжение в пределах 6.8 Вольта.

Таблица рабочих параметров стабилитронов.

В таблице указаны основные параметры – это напряжение стабилизации и ток стабилизации. Есть и другие параметры, но они тебе пока не нужны. Главное понять суть работы стабилитрона и научиться выбирать нужный тебе для твоих схем и для ремонта радиоэлектроники.

Рассмотрим принципиальную схему объясняющую принцип работы стабилитрона.

Возьмем стабилитрон параметром — напряжение стабилизации 12Вольт. Для того чтобы через стабилитрон начал поступать ток в обратном направлении от катода к аноду, входное напряжение должно быть выше напряжения стабилизации стабилитрона (с запасом). Например — если стабилитрон рассчитан на напряжение стабилизации 12Вольт входное напряжение должно быть не меньше 15Вольт. Балластный резистор Rб ограничивает ток который будет проходить через стабилитрон до номинального. Как видишь, при напряжении, превышающем ток стабилизации стабилитрона, оный начинает сбрасывать лишнее напряжение через себя на минус. Иными словами, стабилитрон, выполняет роль переливной трубы, чем больше напор воды или величина электрического тока, тем сильнее открывается стабилитрон и наоборот при уменьшении напряжения, стабилитрон начинает закрываться, уменьшая прохождения тока через себя.

Эти изменения могут происходить как плавно, так и с огромной скоростью в малых интервалах времени, что позволяет добиться высокого коэффициента стабилизации напряжения.

Если напряжение на входе стабилизатора будет меньше 12Вольт, стабилитрон “закроется” и напряжение на выходе стабилизатора будет “плавать” так – же, как и на входе, при этом никакой стабильности напряжения не будет. Вот почему напряжение входное должно быть больше чем необходимое выходное (с запасом). Приведенная схема называется параметрический стабилизатор . Кто хочет полный расклад по расчету параметрического стабилизатора, пусть посетит ГУГЛ, нам начинающим для первого раза вполне достаточно, не будем заморачивать себя формулами.

Теперь перейдем к лабам (лабораторным работам :).

Перед тобой макет параметрического стабилизатора, на входе и выходе макета имеются вольтметры. Сейчас вольтметр на ВХОДЕ стабилизатора показывает 6 вольт на ВЫХОДЕ стабилизатора практически такое же напряжение. Так как я уже говорил, стабилитрон макета имеет напряжение стабилизации 8и2 вольта, напряжение в 6 Вольт на ВХОДЕ стабилизатора, не превышает напряжение стабилизации стабилитрона, поэтому стабилитрон закрыт.

Теперь я повышаю напряжение на входе стабилизатора до 15 Вольт, напряжение на входе стабилизатора превысило напряжение стабилизации стабилитроне и на выходе стабилизатора достигло заданного напряжения стабилизации 8.2 Вольта таким оно и остается, практически неизменным, даже при резких бросках напряжения, стабилитрон отрабатывает мгновенно, поддерживая стабильность напряжения. Повторяюсь еще раз – “Для того чтобы параметрический стабилизатор работал правильно на входе всегда должно быть напряжение, превышающее напряжение стабилизации стабилитрона т. е. с запасом примерно 15-25%”

Так как ток стабилизации такого параметрического стабилизатора слишком мал, параметрический стабилизатор обычно применяют в блоках питания как стабилизирующий элемент схемы, где кроме самого стабилизатора присутствуют элементы регулировки напряжения, мощные транзисторы.

Пример — схема регулируемого стабилизатора (блока питания).

В современной электронике, параметрические стабилизаторы применяют все реже, в основном используя специальные микросхемы, которые представляют из себя довольно мощные стабилизаторы с очень хорошим коэффициентом стабилизации, они компактны и легко применимы.

Но о них мы поговорим в следующий раз. Тем не менее, параметрические стабилизаторы можно встретить во многих различных электронных схемах, поэтому знать их и понимать элементарно принцип работы нужно.

Как проверить стабилитрон

Для проверки стабилитрона, нужно знать как пользоваться мультиметром и воспользоваться методикой проверки полупроводникового диода, если есть возможность можно собрать схему параметрического стабилизатора и проверить стабилитрон в работе, как описано в этой статье. Если у тебя имеется стабилитрон и ты не знаешь его параметры (стерлась надпись на корпусе стаба), собрав схемку параметрического стабилизатора можно определить на какое напряжение стабилизации работает этот неопознанный стаб.

Для любых предложений по сайту: [email protected]