Классификационное напряжение варистора что это?

Что такое варистор Varistor (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления)...

Классификационное напряжение варистора что это?

Варисторы — принцип работы, типы и применение

Что такое варистор и для чего он применяется, рассмотрен принцип действия варистров, их вольт-амперная характеристика, приведены основные параметры варисторов отечественного производства, а также параметры для дисковых варисторов серии TVR. Как выглядит из себя варистор который применяется в бытовой радиоаппаратуре, а также внешний вид мощных варистров.

Принцип работы варистора

Варисторы, Varistors (название образовано от двух слов Variable Resistors — изменяющиеся сопротивления) — это полупроводниковые (металлооксидные или оксидноцинковые) резисторы, обладающие свойством резко уменьшать свое сопротивление с 1000 МОм до десятков Ом при увеличении на них напряжения выше пороговой величины.

В этом случае сопротивление становится тем меньше, чем больше действует напряжение. Типичная вольт-амперная характеристика варистора имеет резко выраженную нелинейную симметричную форму (рисунок 1), то есть он может работать и на переменном напряжении.

Рис. 1. Вольт-амперная характеристика варистора.

Варисторы подсоединяют параллельно нагрузке, и при броске входного напряжения основной ток помехи протекает через них, а не через аппаратуру.

Таким образом, варисторы рассеивают энергию помехи в виде тепла. Так же, как и газоразрядник, варистор является элементом многократного действия, но значительно быстрее восстанавливает свое высокое сопротивление после снятия напряжения.

Достоинством варисторов, по сравнению с газоразрядниками, являются:

  • большее быстродействие;
  • безынерционное отслеживание перепадов напряжений;
  • выпускаются на более широкий диапазон рабочих напряжений (от 12 до 1800 В); о длительный срок эксплуатации;
  • имеют более низкую стоимость.

Варисторы широко применяются в промышленном оборудовании и приборах бытового назначения:

  • для защиты полупроводниковых приборов: тиристоров, симисторов, транзисторов, диодов, стабилитронов;
  • для электростатической защиты входов радиоаппаратуры;
  • для защиты от электромагнитных всплесков в мощных индуктивных элементах;
  • как элемент искрогашения в электромоторах и переключателях.

Виды варисторов

Типовое значение времени срабатывания варисторов при воздействии перенапряжения составляет не более 25 наносекунд (нс), но для защиты некоторых видов оборудования его может оказаться недостаточно (для электростатической защиты необходимо не более 1 нс).

Поэтому совершенствование технологии изготовления варисторов во всем мире направлено на повышение их быстродействия.

Так, например, фирме “S+M Epcos”, благодаря применению при изготовлении варисторов многослойной структуры SIOV-CN и их SMD-исполнения (безвыводная конструкция для поверхностного монтажа), удается добиться времени срабатывания менее 0,5 нс (при расположении таких элементов на печатной плате для получения указанного быстродействия уже необходимо минимизировать индуктивности внешних соединительных проводников).

В дисковой конструкции варисторов за счет индуктивности выводов время срабатывания увеличивается до нескольких наносекунд.

Малое время срабатывания, высокая надежность, отличные пиковые электрические характеристики в широком диапазоне рабочей температуры при малых размерах ставят многослойные варисторы на первое место при выборе элементов защиты от статических зарядов.

Рис. 2. Внешний вид варисторов.

Рис. 3. Внешний вид мощных варисторов.

Например, в области производства сотовых телефонов многослойные варисторы можно считать уже стандартом в защите от статического электричества.

CN-варисторы могут надежно защищать от статических разрядов: клавиатуры, разъемы для подключения факса и модема, соединители зарядных устройств, входы интегральных аналоговых микросхем, выводы микропроцессоров.

Характеристики варисторов

Основными параметрами, которые используют при описании характеристик варисторов, являются:

  • Un — классификационное напряжение, обычно измеряемое при токе 1 мА, — это условный параметр, который указывается при маркировке элементов;
  • Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);
  • Um= — максимально допустимое постоянное напряжение;
  • Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;
  • W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.
  • Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;
  • Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда вари-стор пропускает через себя большой ток, она падает до нуля.

От величины W зависит, как долго может действовать перегрузка (с максимальной мощностью Рт) без опасности повредить варистор, т. е.:

Для применения рабочее напряжение у варисторов выбирается исходя из допустимой энергии рассеяния и максимально допустимой амплитуды напряжения. Напряжение ограничения примерно равно квалификационному напряжению (Un) варистора.

Для ориентировочных расчетов рекомендуется, чтобы на переменном напряжении оно не превышало Uвх PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.

  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!
  • Варистор

    Обозначение, параметры и применение варисторов

    Все, кто сталкивался с радиоэлектронной аппаратурой, наверняка обратили внимание, что название большинства электронных компонентов заканчивается на «стор». Резистор, транзистор, тиристор, стабистор.

    Рассмотрим ещё один компонент электронных схем. Он называется варистор и представляет собой резистор, сопротивление которого меняется в зависимости от величины подаваемого напряжения.

    Varistor (Variable Resistor) так и переводится – изменяющееся сопротивление. А вот так варистор обозначается на принципиальных схемах.

    Английская буква U рядом с наклонной чертой указывает на то, что сопротивление электронного компонента зависит от напряжения. На схемах варистор обычно маркируется двумя буквами RU, а после них ставиться порядковый номер варистора в схеме (1, 2, 3. ).

    Варистор является полупроводниковым прибором, изготовленным из порошка карбида кремния (SiC) или окиси цинка (ZnO) методом прессования. У варистора симметричная и нелинейная вольт-амперная характеристика, поэтому он может применяться в цепях постоянного и переменного тока. Варисторы обладают крайне полезным для электрических цепей качеством. Они способны резко менять своё сопротивление при превышении напряжением определённого порога срабатывания.

    В случае возникновения импульса напряжения способного вывести из строя электронное устройство, варистор практически мгновенно изменяет своё сопротивление от сотен МОм до десятков Ом, то есть закорачивает цепь питания, поэтому перед варистором всегда ставится обычный плавкий предохранитель.

    Раньше для таких защитных целей ставились газонаполненные разрядники, но их быстродействие и надёжность не идут ни в какое сравнение с параметрами варисторов. Например, дисковый варистор без выводов и впаиваемый непосредственно в печатную плату имеет время срабатывания не превышающее нескольких наносекунд.

    Варистор подключается параллельно цепи питания. При отсутствии опасных импульсов напряжения ток, протекающий через него, имеет небольшую величину и варистор не влияет на работу схемы, так как по сути является диэлектриком.

    Если возник импульс перенапряжения, варистор из-за нелинейности характеристики уменьшает своё сопротивление практически до нуля. Нагрузка шунтируется, а поглощённая энергия рассеивается в виде тепла. Варистор не обладает инерцией, поэтому после «срезания» импульса он мгновенно снова приобретает очень большое сопротивление.

    Если импульс перенапряжения был слишком большой и мощный, то варистор выходит из строя. Порой его корпус трескается, а то и вообще раскалывается на несколько частей.

    Бывает, что варистор очень выручает при неполадках в электросети, так как принимает высоковольтный импульс на себя и способствует скорейшему разрыву цепи. При этом основная часть схемы остаётся невредимой. На фото блок питания от проектора, который вышел из строя после скачка напряжения в электросети 220V.

    После замены плавкого предохранителя работа проектора была полностью восстановлена. Никакого сложного ремонта, кроме замены предохранителя и самого варистора не потребовалось. Вот так одна небольшая деталь может спасти дорогостоящий прибор.

    Параметры варисторов.

    Основные параметры варисторов:

    Классификационное напряжение варистора (Varistor Voltage). Это величина напряжения, при котором через варистор протекает ток величиной 1 mA. Этот параметр не является рабочим и скорее является условным. При подборе варистора следует обращать внимание на параметры, о которых речь пойдёт далее;

    Максимально допустимое переменное напряжение (Maximum Allowable Voltage – ACrms). Для варисторов указывается среднеквадратичное значение переменного напряжения (rms). Это величина переменного напряжения, при котором варистор «срабатывает» и начинает пропускать через себя ток, выполняя свои защитные функции;

    Максимально допустимое постоянное напряжение (Maximum Allowable Voltage – DC). Тоже, что и максимально допустимое переменное напряжение но для постоянного тока. Как правило, величина этого параметра больше, чем для переменного тока. Указывается также в вольтах (V);

    Максимальное напряжение ограничения (Maximum Clamping Voltage). Это максимальное напряжение, которое способен выдержать варистор без повреждения. Как правило оговаривается для конкретной величины протекающего через варистор тока. При превышении напряжения ограничения варистор выходит из строя. Корпус варистора при этом растрескивается надвое или вовсе разлетается на куски.

    Максимальная поглощаемая энергия в джоулях (Дж). Это величина максимальной энергии импульса, которую может рассеять варистор в виде тепла без угрозы разрушения самого варистора;

    Время срабатывания — время, за которое варистор переходит из высокоомного состояния в низкоомное при превышении максимально допустимого напряжения. Для широко распространённых варисторов это значение составляет несколько десятков наносекунд (нс). Например, 25 нс.

    Допустимое отклонение (Varistor Voltage Tolerance) – допустимое отклонение квалификационного напряжения варистора. Указывается в процентах – %. Может быть ±5%, ±10%, ±20% и т.д. В маркировке импортных варисторов значение допуска зашифровывается в маркировку варистора буквой. Например, для варисторов фирмы Joyin принято такое обозначение: K – ±10%, L – ±15%, M – ±20%, P – ±25%. Таким образом, для варистора типа JVR-07N391K – отклонение составляет не более ±10%.

    При подборе варисторов для электронных схем лучше обращаться к справочному листку (даташиту) на конкретный варистор. Это будет более разумным решением, так как на корпус импортных варисторов наноситься только величина квалификационного напряжения, по которому достаточно сложно судить о параметрах защитного элемента.

    Применение варисторов.

    Для обычной сети 220 вольт устанавливают защитные варисторы с напряжением срабатывания 275 – 420 вольт. Вот пример надёжно защищённого сетевого фильтра.

    Этот сетевой фильтр защищают три варистора. То есть надёжно блокируется проникновение импульса не только по фазовой цепи, но и по цепи нуля. Варистор RU1 стоит между фазой и нулевым проводником. Он осуществляет основную защиту. Два других RU2 и RU3 подключаются между фазой и землёй и между нулём и землёй. Очень часто бывает ситуация когда на целой улице у всех пользователей вышла из строя вся электронная бытовая аппаратура. О таких случаях были даже телепередачи, когда тысячи человек не могли разобраться на кого писать заявление в суд.

    А всё дело в том, что на линии электроснабжения, питающей допустим улицу или микрорайон, вместо фазы и нуля по обоим проводам пошла фаза. Это почти верная смерть для незащищённой бытовой аппаратуры. То есть между проводами N и PE, если всё нормально, напряжения быть не должно. В случае появления фазы на проводе N варистор RU2 благополучно зашунтирует защищаемый блок. Это один из примеров использования варисторов в цепях питания бытовой электронной аппаратуры.

    Миниатюрные многослойные варисторы уже давно используются в схемах мобильных телефонов и защищают их от статического электричества. Так же варисторы используются для надёжной защиты компьютерных разъёмов и выводов микропроцессоров от той же статики. Варисторы активно применяются в автомобильной электронике и телекоммуникационном оборудовании.

    Варисторы можно встретить во входных цепях блоков питания. Вот фото варистора 391KD14 на плате резервируемого блока питания.

    А здесь варистор FNR-14K391 установлен в схему охранного прибора «Гранит» для защиты его блока питания от всплесков напряжения в электросети 220V.

    Обнаружить варистор можно и на платах электронного балласта для люминесцентных ламп. На фото показан варистор MYG-10K471, установленный в схему электронного пуско-регулирующего аппарата (ЭПРА) для четырёх линейных люминесцентных ламп. На плате он обозначен как RU.

    Варисторы для защиты бытовой электроники обычно выпускаются в виде диска с двумя выводами. Чем больше диаметр диска, тем более мощный импульс напряжения способен погасить варистор. Мощность импульса или энергию, которую способен «погасить» варистор обычно измеряют в джоулях (Дж).

    Вот, например, несколько варисторов. Значение диаметра варистора в миллиметрах, как правило, вводится в маркировку самого варистора, например, JVR-07N391K (диаметр – 7 мм.).

    Диаметр самого большого варистора типа MYG-14K391, изображённого на фотографии – 14 мм. (

    70 Дж), чуть поменьше варистор MYG-10K471 – 10 мм. (

    45 Дж), а маленького JVR-07N391K – 7 мм. (

    В скобках указана величина энергии поглощения в джоулях (Дж). Как видим, варистор, обладающий самым большим диаметром в 14 мм. способен погасить энергию опасного импульса в 70 джоулей, в то время как самый маленький варистор диаметром 7 мм. способен погасить всего лишь 30 джоулей. Таким образом, по величине диаметра варистора можно косвенно судить о его максимальной энергии поглощения. Понятно, что в электронные схемы предпочтительнее устанавливать варисторы, рассчитанные на большую энергию поглощения. Также рекомендуется устанавливать в схему по два одинаковых варистора, включенных параллельно.

    Также существуют варисторы и для SMD монтажа. По внешнему виду они напоминают SMD диоды и поэтому их достаточно сложно отличить.

    К варисторам отечественного производства относятся изделия марки СН2-1А, СН1-2-1, ВР-4В и др.

    Конечно, у варисторов имеются недостатки, но они не столь значительны по сравнению с газоразрядными приборами. Прежде всего, варисторы обладают довольно большими шумами на низкой частоте, а также меняют свои параметры со временем и от воздействия температуры.

    Стоит заметить, что среди защитных компонентов кроме варистора существует ещё один электронный компонент – супрессор. Это так называемый защитный диод или трансил. По своим функциям (но не устройству!) он чем-то похож на варистор, но обладает большим быстродействием и, как правило, используется в низковольтных цепях.

    Кроме маломощных варисторов, которые применяются для защиты бытовой аппаратуры, промышленность выпускает очень мощные варисторы на большие напряжения и токи. Они используются на трансформаторных подстанциях и всегда включаются в системы грозозащиты.

    При установке варисторов в самодельные конструкции следует иметь в виду, что иногда, при возникновении критических условий варисторы могут «взрываться» и чтобы предохранить монтаж и другие радиоэлектронные компоненты от последствий такого «взрыва» их стараются помещать в защитные экраны. Если сравнивать варисторы из карбида кремния и оксида цинка то, по мнению специалистов, вторые предпочтительнее.

    Что такое варистор, основные технические параметры, для чего используется

    Каждый электронный прибор, который включен в сеть нуждается в защите от превышения пороговых значений тока или напряжения. Для защиты по току применяют различные плавкие предохранители и автоматические выключатели, а вот для предохранения устройства от перенапряжения чаще всего применяют варисторы. В данной статье мы рассмотрим принцип работы варистора, его характеристики, достоинства и недостатки этого электронного компонента.

    Что такое варистор и где применяется

    Варистор – это выполненный из полупроводникового материала переменный резистор, который способен изменять свое электрическое сопротивление в зависимости от приложенного к нему напряжения.

    Принцип действия у такого электронного компонента отличается от обычного резистора и потенциометра. Стандартный резистор имеет постоянное во величине сопротивление в любой промежуток времени вне зависимости от напряжения в цепи, потенциометр позволяет менять сопротивление вручную, поворачивая ручку управления. А вот варистор обладает нелинейной симметричной вольтамперной характеристикой и его сопротивление полностью зависит от напряжения в цепи.

    Благодаря этому свойству, варисторы широко и эффективно применяют для защиты электрических сетей, машин и оборудования, а также радиоэлектронных компонентов, плат и микросхем вне зависимости от вида напряжения. Они имеют невысокую цену изготовления, надежны в использовании и способны выдерживать высокие нагрузки.

    Варисторы применяются, как в высоковольтных установках до 20 кВ, так и в низковольтных от 3 до 200 В в качестве ограничителя напряжения. При этом они могут работать, как в сетях с переменным, так и с постоянным током. Их используют для регулировки и стабилизации тока и напряжения, а также в защитных устройствах от перенапряжения. Используются в конструкции сетевых фильтров, блоков питания, мобильных телефонов, УЗИП и других ОИН.

    Виды и принцип работы

    При работе в нормальных условиях варистор имеет огромное сопротивление, которое может снижаться при превышении напряжением порогового значения. То есть, если значительно повышается напряжение в цепи, то варистор переходит из изолирующего состояния в электропроводящее и за счет лавинного эффекта в полупроводнике стабилизирует напряжение с помощью пропускания через себя тока большой величины.

    Варисторы могут работать с высоким и низким напряжением и, соответственно, подразделяются на две группы устройств, которые имеют одинаковый принцип работы:

    1. Высоковольтные: способные работать в цепях со значениями тока до 20 кВ (используются в защитных системах сетей и оборудования, в устройства защиты от импульсных перенапряжений).
    2. Низковольтные: номинальное напряжения для компонентов данного вида варьируется от 3 до 200 В (применяется для защиты электронных устройств и компонентов оборудования с током 0,1 – 1А и устанавливаются на входе или выходе источника питания).

    Время срабатывания варистора при скачке напряжения составляет около 25 нс, что является отличным значением, но в некоторых случая недостаточным. Поэтому производители электронных компонентов разработали технологию изготовления smd-резистора, который имеет время срабатывания от 0,5 нс.

    Варисторы всех типов изготавливают из карбида кремния или оксида цинка путем спекания данного материала со связующим веществом (смолы, глина, стекло) при высокой температуре. После получения полупроводникового элемента выполняется его металлизация с обеих сторон с припайкой металлических выводов для подключения.

    Маркировка, основные характеристики и параметры

    Каждый производитель варисторов маркирует свой продукт определенным образом, поэтому существует достаточно большое количество вариантов обозначений и их расшифровок. Наиболее распространенным российским варистором является К275, а популярными компонентами иностранного производства являются 7n471k, kl472m и другие.

    Расшифровать обозначение варистора CNR-10d751k можно следующим образом: CNR – металлооксидный варистор; d – означает, что компонент в форме диска; 10 – это диаметр диска; 751 –напряжение срабатывания для данного устройства (расчёт происходит путём умножения первых двух цифр на 10 в степени равной третьей цифре, то есть 75 умножаем на 10 в первой степени получатся 750 В); k – допустимое отклонение номинального напряжения, которое равно 10 % в любую сторону (l – 15%, M – 20%, P – 25 %).

    Основными характеристиками варисторов являются следующие параметры:

    Классификационное напряжение – напряжение при определенных значениях тока, протекающего через варистор (обычно данное значение составляет 1 мА). Этот параметр является условным и не влияет на выбор устройства;

    Максимально допустимое напряжение – диапазон напряжения (среднеквадратичное или действующее значение), при котором варистор начинает понижать свое сопротивление;

    Максимальная энергия поглощения – характеристика, показывающая значение энергии, которую варистор рассеивает и не выходит из строя при воздействии одиночного импульса (измеряется в Джоулях);

    Максимальный импульсный ток – нормирует время нарастания и длительность действия импульса тока (измеряется в Амперах);

    Ёмкость – очень важный параметр, который измеряется при закрытом состоянии и заданной частоте (падает до нуля, если к варистору приложен большой ток);

    Допустимое отклонение – отклонение от номинальной разности потенциалов в обе стороны (указывается в процентах).

    Время срабатывания – промежуток времени, за который варистор переходит из закрытого состояния в открытое (обычно несколько десятков наносекунд).

    Преимущества и недостатки варисторов

    Важными преимуществами нелинейного резистора (варистора) является его стабильная и надежная работа с высокими частотами и большими нагрузками. Он применяется во многих устройствах, работающих с напряжениями от 3 В до 20 кВ, относительно прост и дешёв в производстве и эффективен в эксплуатации. Дополнительными важными преимуществами являются:

    • высокая скорость срабатывания (наносекунды);
    • длительный срок службы;
    • возможность отслеживания перепадов напряжения (безынерционный метод).

    Несмотря на то, что данный электронный компонент имеет достаточно много преимуществ, он имеет и недостатки, которые влияют на его применение в различных системах. К ним можно отнести:

    • низкочастотный шум при работе;
    • старение компонента (утрата параметров со временем);
    • большая емкость: зависит от напряжения и типа элемента, находится в диапазоне от 70 до 3200 пФ и влияет на работоспособность устройства;
    • при максимальных значениях напряжения мощность не рассеивается – значительно перегревается и выходит из строя при длительных максимальных значениях напряжения.

    Варисторы – что это такое, принцип действия, характеристики и параметры.

    В статье изучим что такое варистор, узнаем принцип его действия, рассмотрим основные характеристики и параметры, которыми обладает данное полупроводниковое устройство.

    Варистор – это полупроводниковый резистор, сопротивление которого зависит от подаваемого на него напряжения. Имеет нелинейную симметричную вольт-амперную характеристику. Изготавливается прессованием из таких полупроводников как оксид цинка(ZnO) или карбид кремния (SiC). Из-за своего ВАХ, варистор может применяться в цепях переменного и постоянного тока.

    Свое название варистор получил от английского словосочетания Variable Resistor, что дословно переводиться как переменный резистор. От слова Variable взяли начало, а от Resistor – конец. В отличии от переменного резистора в привычном понимании, варистор обладает немного другими свойствами и путать их не стоит.

    Корпус варистора обычно выполняется в виде дисков и таблеток. Но так же существуют корпуса стержнем и с подвижные контактом (подстроечные варисторы).

    Варистор имеет условно графическое обозначение (УГО) как у резистора, но с наклонной чертой и буквой U. Буква U на УГО указывает на то, что сопротивление этого элемента цепи зависит от напряжения. На схемах и платах обозначается двумя буквами RU и цифрой (порядковый номер на схеме). А вот так выглядит нелинейная симметричная вольт-амперная характеристика варистора.

    Нужны варисторы для защиты цепей от перенапряжения. В электронике и низковольтных сетях они служат для защиты от статического электричества. Варисторы можно найти почти во всех электронных устройствах – от блоков питания до электронного пускорегулирующего аппарата светильника люминесцентных ламп. Есть варисторы и в smd варианте, они очень похожи на диоды и сложно отличаемы в схемах.

    Как работает варистор?

    Принцип работы варистора достаточно прост. Рассмотрим ситуацию, когда варистор защищает от перенапряжения. В схему он включается параллельно защищаемой цепи. При нормальном режиме работы он имеет высокое сопротивление и протекающий через него ток очень мал. Он имеется свойства диэлектрика и не оказывает никакого влияния на работу схемы. При возникновении перенапряжения, варистор моментально меняет свое сопротивление с очень высокого, до очень низкого и шунтирует нагрузку. Известно, что ток идет по пути наименьшего сопротивления, поэтому варистор поглощает это перенапряжение и рассеивает эту энергию в атмосферу, в виде тепла. После того, как напряжение стабилизируется, сопротивление снова возрастает и варистор “запирается”. Надеюсь даже чайник понял принцип работы. Если что-то не ясно, рекомендуется ознакомиться с видео.

    Если напряжение будет выше того, которое может выдержать и рассеять варистор, то он выйдет из строя. Корпус его треснет либо развалиться на части. В некоторых случаях он может взорваться. Поэтому, в целях защиты основной схемы, рекомендуется ограждать его от основных компонентов защитным экраном либо монтировать его вне корпуса, особенно для высоковольтных схем. Как проверить варистор мультиметром – узнаете тут.

    Как говорилось выше, варистор подключается параллельно нагрузке:

    • В цепях переменного тока – фаза – фаза, фаза – ноль;
    • В цепях постоянного тока – плюс и минус.

    Так как варистор закорачивает цепь питания, перед ним всегда монтируется плавкий предохранитель. Несколько примеров схем включения варистора:


    Характеристики и параметры варисторов

    • Классификационное напряжение (Varistor Voltage) – это величина напряжения, при котором ток в 1 мА протекает через варистор;
    • Максимально допустимое переменное напряжение (Maximum Allowable Voltage – ACrms) – Это среднеквадратичное значение переменного напряжения (rms) в вольтах. Это та величина, при которой варистор “открывается” и понижается его сопротивление, тем самым он начинает выполнять свою задачу;
    • Максимально допустимое постоянное напряжение (Maximum Allowable Voltage – DC) – Варистор можно использовать в цепях постоянного тока, этот параметр показывает напряжение “открытия”, но уже для постоянного напряжения. Указывается в вольтах. Обычно выше, чем величина для переменных цепей;
    • Максимальное напряжение ограничения (Maximum Clamping Voltage) – максимальное напряжение в вольтах, которое может выдержать корпус варистора без выхода из строя. Обычно указывается для конкретной величины тока;
    • Максимальная поглощаемая энергия – указывается в джоулях (Дж). Величина импульса, которую может рассеять варистор, не выходя из строя;
    • Время срабатывания – обычны указывается в наносекундах (нс). Это время, которое требуется варистору для изменения величины сопротивления от очень высокого, до очень низкого;
    • Допустимое отклонение (Varistor Voltage Tolerance) – это допустимое отклонение квалификационного напряжения варистора, указывается оно в процентах (%). Это фиксированные величины ±5%, ±10%, ±20% и т.д. В импортных варисторах величина отклонения, зашифрованна в определенную букву и указывается в маркировке варистора, каждая фирма может использовать свои маркировки. К примеру, для варисторов фирмы Joyin принято такое обозначение: K – ±10%, L – ±15%, M – ±20%, P – ±25%.

    Подбор варисторов осуществляется по специальным справочникам на основе вышеописанных параметров. Узнаем значения своей цепи и защищаемого оборудования. На основе этого выбираем варистор, который нужно ставить.

    Маркировка варисторов

    Обычно на корпусе варистора написана очень длинна маркировка, сейчас на примере 20D471K расшифруем маркировку и узнаем его характеристики.

    1. 20D – это диаметр варистора, в данном случае 20мм. Чем больше диаметр – тем больше энергии может рассеять варистор. По данному параметру можно косвенно судить о максимальной энергии, которую он может поглотить. Чем больше – тем лучше.
    2. 47 – Классификационное напряжение варистора, 470 вольт.
    3. 1K – допустимое отклонение квалификационного напряжения варистора, как было указано выше, K – это ±10%.

    Обычно у производителей маркировки отличаются друг от друга, но незначительно. Примеры маркировки этого варистора, но от разных производителей: Epcos – S20K300, Fenghua – FNR-20K471, TVR -TVR20D471, CNR – CNR20D471, JVR – JVR-20N471K.

    Как видим, у фирмы Epcos маркировка показывает на число 300, это уже не классификационное напряжение, а максимально допустимое переменное напряжение. В любом случае не рекомендуется гадать самому с маркировкой, если есть возможность, то лучше воспользоваться поисковиками либо справочником и получить всю подробнейшую информацию о нужном вам варисторе.

    Заключение

    Варистор – это достаточно надежный и дешевый компонент, такой себе простак и универсал. Может работать в разных условиях (переменные и постоянные цепи, высокие частоты), выдерживать большие перегрузки. Он нашел применение во всех нишах связанных с электричеством и не только как защитник от перенапряжения. Варистор используют как: регуляторы и стабилизаторы, в качестве ограничителей перенапряжения. Из недостатков: высокий шум на низких частотах, так же из-за внешних условий и старения, он может изменять свои параметры.

    Варисторы — принцип действия, типы и применение

    Варистором называется полупроводниковый компонент, способный нелинейно изменять свое активное сопротивление в зависимости от величины приложенного к нему напряжения. По сути это — резистор с такой вольт-амперной характеристикой, линейный участок которой ограничен узким диапазоном, к которому приходит сопротивление варистора при приложении к нему напряжения выше определенного порогового.

    В этот момент сопротивление элемента скачкообразно изменяется на несколько порядков — уменьшается от изначальных десятков МОм до единиц Ом. И чем сильнее повышается приложенное напряжение — тем меньше и меньше становится сопротивление варистора. Данное свойство делает варистор главным элементом современных устройств защиты от импульсных перенапряжений.

    Будучи подключен параллельно защищаемой нагрузке, варистор берет на себя ток помехи и рассеивает его в форме тепла. А по окончании данного события, когда приложенное напряжение снижается и возвращается за порог, варистор восстанавливает свое исходное сопротивление, и снова готов выполнять защитную функцию.

    Можно сказать, что варистор представляет собой полупроводниковый аналог газового разрядника, только у варистора, в отличие от газового разрядника, первоначальное высокое сопротивление восстанавливается быстрее, практически отсутствует инерционность, да и диапазон номинальных напряжений начинается от 6 и доходит до 1000 и более вольт.

    По этой причине варисторы находят широкое применение в защитных цепях полупроводниковых ключей, в схемах с индуктивными элементами (для искрогашения), а также в качестве самостоятельных элементов электростатической защиты входных цепей радиоэлектронных устройств.

    Процесс изготовления варистора заключается в спекании порошкообразного полупроводника со связующим компонентом при температуре в районе 1700 °C. Здесь в ход идут такие полупроводники как оксид цинка или карбид кремния. Связующим веществом может служить жидкое стекло, глина, лак или смола. На полученный путем спекания дискообразный элемент металлизацией наносят электроды, к которым и припаивают монтажные выводы компонента.

    Кроме традиционной дисковой формы, можно встретить варисторы в форме стержней, бусинок и пленок. Перестраиваемые варисторы изготавливают в форме стержней с подвижным контактом. Традиционные полупроводниковые материалы, применяемые в производстве варисторов на основе карбида кремния с разными связками: тирит, вилит, лэтин, силит.

    Внутренний принцип действия варистора заключается в том, что грани маленьких полупроводниковых кристаллов внутри связующей массы соприкасаются друг с другом, образуя проводящие цепочки. При прохождении через них тока определенной величины, наступает местный перегрев кристаллов, и сопротивление цепочек падает. Этим явлением и объясняется нелинейность ВАХ варистора.

    Один из главных параметров варистора, наряду со среднеквадратичным напряжением срабатывания, — коэффициент нелинейности, показывающий отношение статического сопротивления к динамическому. Для варисторов на основе оксида цинка данный параметр лежит в диапазоне от 20 до 100. Что касается температурного коэффициента сопротивления варистора (ТКС), то он обычно отрицателен.

    Варисторы компактны, надежны, хорошо справляются со своей задачей в широком диапазоне рабочих температур. На печатных платах и в УЗИП можно встретить маленькие дисковые варисторы диаметром от 5 до 20 мм. Для рассеивания более высоких мощностей применяются блочные варисторы с габаритными размерами 50, 120 и более миллиметров, способные рассеивать в импульсе килоджоули энергии и пропускать через себя токи в десятки тысяч ампер, при этом не терять работоспособности.

    Один из самых важных параметров любого варистора — время срабатывания. Хотя обычное для варистора время активации не превышает 25 нс, и в некоторых цепях этого достаточно, тем не менее кое-где, например для защиты от электростатики, необходима более быстрая реакция, не более 1 нс.

    В связи с данной потребностью, ведущие мировые производители варисторов направляют свои усилия именно в сторону повышения их быстродействия. Один из путей достижения данной цели — сокращение длины (соответственно индуктивности) выводов многослойных компонентов. Такие CN-варисторы уже заняли достойное место в деле защиты от статики выводов интегральных микросхем.

    Классификационное напряжение варистора DC (1mA) — является условным параметром, при данном напряжении ток через варистор не превышает 1 мА. Именно классификационное напряжение указывается в маркировке варистора.

    ACrms — среднеквадратичное переменное напряжение срабатывания варистора. DC – напряжение срабатывания на постоянном напряжении.

    Кроме того нормируется максимально допустимое напряжение при заданном токе, например V@10A. W – номинальная рассеиваемая компонентом мощность. J – максимальная энергия одного поглощенного импульса, от которой зависит время, на протяжении которого варистор сможет рассеивать номинальную мощность, оставаясь при этом в исправном состоянии. Ipp – пиковый ток варистора, нормируемый по времени нарастания и длительности поглощаемого импульса, чем дольше импульс — тем меньше допустимый пиковый ток (измеряется в килоамперах).

    Для получения большей рассеиваемой мощности допускается параллельное и последовательное включение варисторов. При параллельном включении важно подобрать варисторы максимально близкие по параметрам.

    Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!