Классификация электрических сетей по напряжению

Классификация электрических сетей Электрические сети классифицируют по ряду показателей, характеризующих как сеть в целом, так и отдельные линии
Содержание
  1. Классификация электрических сетей по напряжению
  2. Классификация электрических сетей по назначению
  3. Классификация электрических сетей
  4. Определение понятия и классификация классов напряжения
  5. Помощь со студенческой работой на тему Классы электрического напряжения
  6. Классификация электрических сетей для классов напряжения
  7. Конструкция ЛЭП для разных классов напряжения
  8. Классификация электрических сетей
  9. Классификация электрических сетей по роду тока
  10. Классификация электрических сетей по величине напряжения
  11. Классификация электрических сетей по назначению
  12. Классификация электрических сетей по принципу построения
  13. Классификация электрических сетей по месту прокладки
  14. Напряжения электрических сетей
  15. Напряжения электрических сетей
  16. 2 thoughts on “ Напряжения электрических сетей ”
  17. Классы электрического напряжения
  18. Определение понятия и классификация классов напряжения
  19. Помощь со студенческой работой на тему Классы электрического напряжения
  20. Классификация электрических сетей для классов напряжения
  21. Конструкция ЛЭП для разных классов напряжения
  22. Классификация электрических сетей

Классификация электрических сетей по напряжению

Классификация электрических сетей по назначению

Классификация электрических сетей

Электрические сети классифицируют по ряду показателей, характеризующих как сеть в целом, так и отдельные линии электропередачи (ЛЭП).
По роду тока

По току различают сети переменного и постоянного тока.

Трехфазный переменный ток 50 Гц имеет ряд преимуществ по сравнению с постоянным:

возможность трансформации с одного напряжения на другое в широких пределах;

возможность передачи больших мощностей на большие расстояния, что достигается. Это достигается трансформацией напряжения генераторов в более высокое напряжение для передачи электроэнергии по линии и обратной трансформацией высокого напряжения в низкое на приемном пункте. При таком способе передачи электроэнергии потери в линии уменьшаются, так как они зависят от тока в линии, а ток при одной и той же мощности тем меньше, чем выше напряжение;

при трехфазном переменном токе конструкция асинхронных электродвигателей проста и надежна (нет коллектора). Конструкция синхронного генератора переменного тока также проще генератора постоянного тока (отсутствует коллектор и др.);

Недостатками переменного тока являются:

необходимость выработки реактивной мощности, которая нужна в основном для создания магнитных полей трансформаторов и электродвигателей. На выработку реактивной энергии топливо (на ТЭС) и вода (на ГЭС) не затрачиваются, однако реактивный ток (ток намагничивания), протекая по линиям и обмоткам трансформаторов, бесполезно (в смысле использования линий для передачи активной энергии) перегружает их, вызывает потери активной мощности в них и лимитирует передаваемую активную мощность. Отношение реактивной мощности к активной характеризует коэффициент мощности установки (чем меньше коэффициент мощности, тем хуже используются электрические сети);

для повышения коэффициента мощности часто используют конденсаторные батареи или синхронные компенсаторы, что удорожает установки переменного тока;

передача очень больших мощностей на большие расстояния лимитируется устойчивостью параллельной работы энергосистем, между которыми осуществляется передача мощности.

К преимуществам постоянного тока следует отнести:

отсутствие реактивной составляющей тока (возможно полное использование линий);

удобное и плавное регулирование в больших пределах числа оборотов электродвигателей постоянного тока;

большой начальный вращаемый момент у сериесных двигателей, нашедших широкое применение в электротяге и кранах;

возможность электролиза и др.

Основными недостатками постоянного тока являются:

невозможность трансформации простыми средствами постоянного тока одного напряжения в другое;

невозможность создания генераторов постоянного тока высокого напряжения (ВН) для передачи мощности на сравнительно большие расстояния;

сложность получения постоянного тока ВН: для этой цели необходимо переменный ток ВН выпрямлять, а затем на месте приема инвертировать в трехфазный переменный. Основное применение получили сети трехфазного переменного тока. При большом количестве электроприемников однофазного тока от трехфазной сети делаются однофазные ответвления. Преимуществами трехфазной системы переменного тока являются:

применение трехфазной системы для создания вращающегося магнитного поля дает возможность выполнения простых электродвигателей;

в трехфазной системе потери мощности меньше, чем в одно- фазной. Доказательство этого положения приводится в табл.1.

Таблица 1. Сравнение трехфазной системы (трехпроводной) с однофазной (двухпроводной)

Как видно из таблицы (строки 5 и 6), dР1=2dР3 и dQ1=2dQ3, т.е. потери мощности в однофазной системе при тех же мощности S и напряжении U больше в два раза. Однако в однофазной системе два провода, а в трехфазной три.

Чтобы расход металла был тем же, нужно уменьшить сечение проводов трехфазной линии по сравнению с однофазной в 1,5 раза. Во столько же раз будет больше сопротивление, т.е. R3=1,5R1. Подставляя это значение в выражение для dР3, получим dР3 = (1,5S2/U2)R1, т.е. потери активной мощности в однофазной линии в 2/1,5=1,33 раза больше, чем в трехфазной.

Использование постянного тока

Сети постоянного тока сооружаются для питания промышленных предприятий (электролизных цехов, электрических печей и т. д.), городского электротранспорта (трамвая, троллейбуса, метрополитена). Подробнее об этом смотрите здесь: Где и как используется постоянный ток

Электрификация железнодорожного транспорта осуществляется как на постоянном, так и переменном токе.

Постоянный ток используют также для передачи энергии на большие расстояния, поскольку применение переменного тока для этой цели связано с трудностью обеспечения устойчивой параллельной работы генераторов электростанций. Однако па постоянном токе при этом работает лишь ЛЭП, на питающем конце которой переменный ток преобразуется в постоянный, а на приемном конце происходит инвертирование постоянного тока в переменный.

Постоянный ток может быть использован в электропередачах переменного тока для организации связи двух электрических систем в виде вставки постоянного тока – электропередачи постоянного тока нулевой длины, когда две электрические системы соединяются между собой через выпрямительно-преобразовательную установку. При этом отклонения частоты в каждой из электрических систем практически не отражаются на передаваемой мощности.

В настоящее время проводятся исследования и разработки электропередачи пульсирующего тока, в которой по общей ЛЭП энергия одновременно передается переменным и постоянным током. При этом предусматривается наложение на все три фазы ЛЭП переменного тока некоторого постоянного относительно земли напряжения, создаваемого с помощью преобразовательных установок на концах ЛЭП.

Такой способ передачи электроэнергии позволяет лучше использовать изоляцию ЛЭП и увеличивает ее пропускную способность по сравнению с передачей переменного тока, а также облегчает отбор мощности от ЛЭП по сравнению с передачей постоянного тока.

По напряжению

По напряжению электрические сети делятся на сети напряжением до 1 кВ и выше 1 кВ.

Каждая электрическая сеть характеризуется номинальным напряжением, при котором обеспечивается нормальная и наиболее экономичная работа оборудования.

Различают номинальные напряжения генераторов, трансформаторов, сетей и электроприемников. Номинальное напряжение сети совпадает с номинальным напряжением электроприемников, а номинальное напряжение генератора по условиям компенсации потерь напряжения в сети принимается на 5 % выше номинального напряжения сети.

Определение понятия и классификация классов напряжения

В зависимости от классификации электросетей, изменяться будут и классы напряжения. Модернизация электрических сетей энергетическими компаниями приводит к повышению класса напряжения. Это обусловлено стремлением сократить расходы и потери при транспортировке электрической энергии непосредственно к потребителю.

Помощь со студенческой работой на тему Классы электрического напряжения

Курсовая работа 490 ₽ Реферат 220 ₽ Контрольная работа 200 ₽

Получи выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость

Передача электрической мощности (если напряжение при этом низкое) приводит к большим ее потерям из-за высоких значений протекающего тока. Формула $Delta S=I^2R$ показывает потерю мощности в зависимости от протекающего тока и сопротивления линии. Снижению потерь способствует уменьшение протекающего тока: так, если уменьшить ток в 2 раза, потери мощности снизятся в 4 раза.

Формула полной электрической мощности записывается следующим образом:

Передача аналогичной мощности при пониженном токе потребует повышения напряжения во столько же раз. Большие мощности, таким образом, целесообразно передавать, если напряжение будет высоким. Строительство высоковольтных сетей, в то же время, сопровождается многими техническими трудностями. Более того, непосредственное потребление электрической энергии при высоком напряжении будет достаточно проблематичным для конечного потребителя.

Это способствовало разделению сетей на участки в соответствии с классом напряжения (т.е. уровнем). Трёхфазные сети, чья задача заключается в передаче больших мощностей, имеют такие классы напряжения:

Требуется консультация по учебной работе? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

  • свыше 750 кВ (1150 и 1500) (класс считается ультравысоким;
  • ниже 750 кВ (500 кВ, 400 кВ) (это европейский стандарт, сам класс называется сверхвысоким);
  • 330 кВ, 220 кВ, 150 кВ, 110 кВ – класс высокого напряжения;
  • 35 кВ, 33 кВ, 20 кВ — класс среднего первого напряжения;
  • 10 кВ, 6 кВ, 3 кВ – класс среднего второго напряжения;
  • 24 кВ, 22 кВ, 18 кВ, 15,75 кВ (считается наиболее распространенным) – класс напряжения на выводах генераторов;
  • 0,69 кВ (европейский промышленный стандарт), 0,4 кВ (основной стандарт), 0,23 кВ, 110 В (старый европейский стандарт) и ниже – класс низкого напряжения.

Классификация электрических сетей для классов напряжения

Классы напряжения классифицируют следующим образом:

  • в зависимости от области применения и назначения;
  • согласно масштабным признакам и размерам сети;
  • по роду тока.

Согласно первому пункту, существуют сети:

  1. Общего назначения (снабжение электричеством в бытовом, промышленном, сельскохозяйственном и транспортном формате).
  2. Автономного электроснабжения (для мобильных и автономных объектов, таких как, суда, космические аппараты и др.).
  3. Технологических объектов (для производственных объектов, а также других инженерных сетей).
  4. Контактные (с целью передачи электроэнергии на транспортные средства, например, локомотивы или трамваи).

Согласно второму пункту, сети бывают:

  1. Магистральными (для связи отдельных регионов с центрами потребления, характеризуются высоким и сверхвысоким уровнями напряжения, а также большими потоками мощности).
  2. Региональными (питаются от магистральных сетей и ориентированы на обслуживание крупного потребителя (город, район и т.д.), характеризуются средним и высоким уровнями напряжения, потоки мощности при этом большие).
  3. Районными (питание осуществляется от региональных сетей, собственных источников питания обычно не имеют, ориентированы на обслуживание малого и среднего потребителя), характеризуются низким и средним уровнями напряжения, а также незначительными потоками мощности;
  4. Внутренними (их задача заключается в распределении электроэнергии на небольших пространствах (в пределах города или отдельно взятого района), иногда имеют собственный (резервный) источник питания, характеризуются незначительными потоками мощности и низким уровнем для напряжения).
  5. Сетями самого нижнего уровня (электрическая проводка), питают отдельное здание, цех или помещение, речь идет о малых потоках мощности и низком уровне (бытовом) напряжения.

Согласно третьему пункту, ток бывает:

  • переменным трехфазным (передача тока идет по трем проводам со смещением фазы переменного тока в каждом из них на 120 градусов относительно других), каждый провод в нем считается фазой с определенным напряжением, выступающей в роли 4-го проводника;
  • переменным однофазным (ток передается по двум проводам за счет бытовой электропроводки от подстанции или распределительного щита);
  • постоянным током (для некоторых сетей автономного электроснабжения и ряда специальных сетей сверхвысокого напряжения).

Мощность трехфазного переменного тока выражается формулами:

Где $U$ и $I$ — это линейное напряжение и ток соответственно, а $varphi$ — угол сдвига фаз между векторами напряжений и токов для одноименных фаз.

Конструкция ЛЭП для разных классов напряжения

Конструкция ЛЭП считается индивидуальной для каждого из классов напряжений. Низковольтные линии, например, размещают на одиночных столбах, вкопанных в грунт. Шаговое напряжение здесь окажется не очень большим при аварийной ситуации, а защита будет обеспечена местным заземленным громоотводом.

Линии до 20 кВ по конструкции мало отличаются от вышеописанных. При этом увеличиваются размеры столбов, изоляторы, а также расстояние между кабелями. Экономически неоправданным здесь считается использование молниезащитных тросов, поэтому они не используются.

Начиная с линий 35 кВ, конструкция усложняется, в особо опасных районах (защита от грозы) подвешивают молниезащитные стальные тросы, столбы ставят из материалов с повышенной прочностью на излом, между проводами создают мощную изоляцию за счет специальных изоляторов, закрепленных на траверсах.

На ЛЭП с классом напряжения 110 кВ молниезащитные тросы подвешивают уже по всей длине. Линии на 330 кВ имеют высокие и мощные арочные столбы, при этом количество изоляторов здесь увеличено с целью блокировки возникновения электрической дуги и снижения коронных разрядов.

Ищешь идеи для учебной работы по данному предмету? Задай вопрос преподавателю и получи ответ через 15 минут! Задать вопрос

Классификация электрических сетей

Электрическая сеть – это совокупность различного напряжения линий и подстанций, задачей которых является передача и распределение электроэнергии.

Электрические сети делят по назначению, месту прокладки, величине напряжения, принципу построения, роду тока и некоторым другим признакам.

Классификация электрических сетей по роду тока

По роду тока электрические сети традиционно разделяют на два вида – сети переменного и постоянного тока.

Наиболее распространёнными являются сети переменного тока. Постоянный ток наиболее часто применяют для питания электрифицированного транспорта, под него и сооружают линии электроснабжения постоянным током. В некоторых отдельных случаях на промышленных предприятиях возникает необходимость в построении систем электропитания постоянным током, например, для электролиза растворов или электрометаллургии, а также при наличии электроприводов постоянного тока.

В последнее время все больший интерес проектировщиков вызывают высоковольтные линии электропередачи постоянного тока (HVDC), активно применяемы для передачи электроэнергии от электростанций альтернативной энергетики. Плюс таких систем в их большей экономичности, возможности параллельной работы с различными линиями постоянного тока (например, линии электропередач переменного тока с частотами 50 Гц и 60 Гц невозможно запустить на параллельную работу), а также в отсутствии необходимости синхронизации частот ЛЭП.

Классификация электрических сетей по величине напряжения

По напряжению электрические сети делят классически на два вида – до 1000 В и выше 1000 В. Для избегания путаниц и удобства эксплуатации серийных электротехнических изделий в установках переменного тока приняты следующие стандарты напряжений:

  • До 1000 В – 127 В, 220 В, 380 В, 660 В;
  • Выше 1000 В – 3 кВ, 6 кВ, 10 кВ, 20 кВ, 35 кВ, 110 кВ, 150 кВ, 220 кВ, 330 кВ, 500 кВ, 750 кВ;

По условиям нормальной эксплуатации электроприемники, в зависимости от назначения, допускают строго ограниченные отклонения напряжения от его номинального значения. Для поддержания напряжений на заданном уровне нужно компенсировать его потерю в трансформаторах. Именно для этой цели номинальные напряжения генераторов, а также вторичных обмоток трансформаторов имеют номиналы на 5% больше чем электроприемники.

Для сетей местного освещения могут применять малые напряжения, а именно 12 В, 24 В, 36 В.

Классификация электрических сетей по назначению

По назначению сети электрические делят на распределительные и питающие.

Питающая линия – это линия, осуществляющая питание подстанции (П) или распределительного пункта (РП) от центра питания (ЦП) без распределения электрической энергии по ее длине.

Распределительная линия – линия, осуществляющая питание ряда трансформаторных подстанций от РП или ЦП.

В сетях напряжением до 1000 В питающими линиями называют линии идущие от трансформаторных подстанций к распределительным щитам или пунктам, а распределительными называют линии, которые идут непосредственно от распределительных щитов или пунктов к электроприемникам.

Ниже показана схема распределения высокого напряжения с наличием питающей и распределительной сети (а)) и только распределительной (б)):

Сети высокого напряжения сооружают в случаях отдаленности на довольно большое расстояние источника напряжения или большого количества трансформаторных подстанций, которые значительно отдалены друг от друга, например, при электроснабжении крупных промышленных предприятий или городов.

Классификация электрических сетей по принципу построения

По принципу построения подразделяют электрические сети на замкнутые и разомкнутые.

Разомкнутая сеть – это совокупность разомкнутых линий получающих питание от одного общего источника питания ИП с одной стороны (рисунок ниже):

Ее главным недостатком можно назвать прекращения питания всех электроприемников участка, на котором произошло отключение при обрыве линии.

В замкнутой системе все наоборот — питание поступает от двух источников ИП и при обрыве магистрали в любом месте питание электроприемников не прекратится. Ниже показана простейшая схема замкнутой сети:

Например, в случае обрыва магистрали в точке К электроприемники 1,2,3,4 будут получать питание по верхней магистрали, а 5,6,7,8 по нижней. В зависимости от требований надежности электроснабжения замкнутые системы могут иметь один и более источников питания. Ниже показан пример схемы с двухсторонним питанием:

Классификация электрических сетей по месту прокладки

Различают наружные и внутренние сети.

Наружные сети могут выполнятся голыми проводами, подвешенными на опорах (воздушные линии), а также специальными кабелями проложенными в блоках (подземные линии), траншеях, коллекторах.

Внутренние сети прокладывают внутри зданий с помощью изолированных проводов (провод с изоляцией), кабелей, шин (токопроводов).

Напряжения электрических сетей

Напряжения электрических сетей

При передаче больших потоков электрической энергии неизбежны потери активной мощности, которые, согласно закону Джоуля — Ленца, равны:

W =(I·I)·R·t,

где I – величина силы тока, А;

R – активное сопротивление линии, Ом;

Для уменьшения потерь передача и распределение ЭЭ производятся на высоких напряжениях.

По уровню номинального напряжения электрические сети иногда делят на сети низкого (до 1 кВ), среднего (выше 1 кВ до 35 кВ включительно), высокого (110–220 кВ), сверхвысокого (330–750 кВ) и ультравысокого (выше 1000 кВ) напряжений. Напряжение приемников электроэнергии, генераторов и трансформаторов, при котором они нормально и наиболее экономично работают, называют номинальным. Это напряжение указывают в паспорте электрической машины и аппарата.

В установках трехфазного тока номинальным принято считать значение междуфазного напряжения. Поэтому если номинальное напряжение линии – 35 кВ, ее фазное напряжение будет в 3 раз меньше, т.е. 20,2 кВ.

Номинальные напряжения электрических сетей и присоединяемых к ним источников и приемников ЭЭ устанавливаются ГОСТом. Шкала номинальных напряжений для сетей переменного тока частотой 50 Гц:

— до 1000 В: 12, 24, 36, 42, 127, 220, 380 В;

— выше 1000 В: 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150 кВ.

Для электрических сетей трехфазного переменного тока напряжением до 1000 В и присоединенных к ним источников и приемников электроэнергии ГОСТ 721-78 устанавливает следующие значения номинальных напряжений:

— сети и приемники – 380/220 В; 660/380 В.

— источники – 400/230 В; 690/400 В.

Номинальное напряжение генераторов с целью компенсации потери напряжения в питаемой ими сети принимается на 5 % больше номинального напряжения этой сети. Номинальные напряжения первичных обмоток, повышающих трансформаторов, присоединяемых к генераторам, приняты также на 5 % больше номинальных напряжений подключаемых к ним линий. Первичные обмотки понижающих трансформаторов имеют номинальные напряжения, равные номинальным напряжениям питающих их линий.

Выбор стандартного напряжения определяет построение всей системы ЭСПП. Для внутрицеховых электрических сетей наиболее распространено напряжение 380/220 В, основное преимущество которого — возможность совместного питания силовых и осветительных ЭП. Наибольшая единичная мощность трехфазных ЭП 380/220 В, как правило, не должна превышать 200–250 кВт, допускающая применение коммутирующей аппаратуры на ток до 630 А. Значительное увеличение электрических нагрузок потребителей (их число и единичная мощность) привело к введению повышенного напряжения — 660 В.

Напряжение 660 В:

— целесообразно на предприятиях, на которых (по условиям планировки цехового оборудования, технологии и окружающей среды) нельзя или трудно приблизить цеховые ТП к ЭП. Это имеет место в угольных шахтах, в карьерах, в нефтедобывающей и химической промышленности, на цементных заводах и т.п. Расстояние от ТП до ЭП при этом увеличивается, и становится необходимым для снижения потерь ЭЭ принять повышенное напряжение распределительной сети 660 В;

— целесообразно на предприятиях с высокой удельной плотностью электрических нагрузок и большим числом электродвигателей в диапазоне мощностей 200–600 кВт;

— позволяет увеличить радиус действия цеховых ТП примерно в 2 раза;

— позволяет повысить единичную мощность трансформаторов, сократить число цеховых ТП, линий и аппаратов напряжением выше 1000 В;

— позволяет снизить в 2 раза расход цветных металлов;

— позволяет увеличить пропускную способность сети 660/380 В в 3 раз.

Недостатки напряжения 660 В:

— необходимость раздельного питания силовых и осветительных ЭП;

— повышенная степень опасности поражения электрическим током.

Напряжение до 42 В (24 В или 36 В) применяется в помещениях с повышенной опасностью для стационарного местного освещения и ручных переносных ламп.

Напряжение 12 В применяется только при особо неблагоприятных условиях в отношении опасности поражения электрическим током (например, при работе в котлах или других металлических резервуарах), для питания ручных переносных светильников.

В зависимости от установленной мощности промышленные предприятия подразделяются на предприятия:

— малой мощности (1–5 МВт);

— средней мощности (5–75 МВт);

— большой мощности (более 75 МВт).

Напряжения 6 и 10 кВ используются для питания предприятий малой мощности и во внутризаводских распределительных сетях. Напряжение 10 кВ является предпочтительным. Напряжение 6 кВ целесообразно тогда, когда нагрузки и ТП предприятия получают питание от шин генераторов собственной ТЭЦ, а также при наличии значительного числа ЭП на номинальное напряжение 6 кВ.

Напряжение 35 кВ используется:

— для создания центров питания предприятий средней мощности, если распределительные сети выполняются на напряжение 6–10 кВ;

— для электроснабжения крупных предприятий с удаленными (5–20 км) ЭП на это напряжение;

— в схемах глубокого ввода.

Напряжение 110 кВ находит сейчас все большее применение в качестве питающего напряжения на предприятиях средней мощности и в качестве распределительного по схеме глубокого ввода — большой мощности.

Напряжение 220 кВ применяется для питания крупных энергоемких предприятий от ТП районных энергосистем, а также для распределения ЭЭ на первой ступени схемы электроснабжения.

2 thoughts on “ Напряжения электрических сетей ”

Так как приемники электроэнергии непосредственно под­ключены к сети определенного номинального напряжения, их номинальные напряжения одинаковы. Вместе с тем, в практике встречаются случаи несовпадения номинальных напряжений электроприемников и электрических сетей Например, лампы накаливания выпускаются на напряжение 230-240 В для рабо­

Вы противоречите в двух предложениях сами себе. Номинальное напряжение сети и номинальное напряжение электроприемника, это разные вещи и они по определению не могут быть равны. Возможно Вы путаете номинальное напряжение и мгновенное значение напряжения.

Классы электрического напряжения

Вы будете перенаправлены на Автор24

Класс напряжения представляет в общем случае численное значение напряжения, применяемое в электрических сетях при передаче энергии потребителям.

Необходимость введения такого понятия в физике была обусловлена повышением эффективности распределения электрической энергии и снижением потерь при ее передаче. Решение такой практической задачи привело к классификации линий электропередач по участкам.

Определение понятия и классификация классов напряжения

В зависимости от классификации электросетей, изменяться будут и классы напряжения. Модернизация электрических сетей энергетическими компаниями приводит к повышению класса напряжения. Это обусловлено стремлением сократить расходы и потери при транспортировке электрической энергии непосредственно к потребителю.

Помощь со студенческой работой на тему
Классы электрического напряжения

Передача электрической мощности (если напряжение при этом низкое) приводит к большим ее потерям из-за высоких значений протекающего тока. Формула $Delta S=I^2R$ показывает потерю мощности в зависимости от протекающего тока и сопротивления линии. Снижению потерь способствует уменьшение протекающего тока: так, если уменьшить ток в 2 раза, потери мощности снизятся в 4 раза.

Формула полной электрической мощности записывается следующим образом:

Передача аналогичной мощности при пониженном токе потребует повышения напряжения во столько же раз. Большие мощности, таким образом, целесообразно передавать, если напряжение будет высоким. Строительство высоковольтных сетей, в то же время, сопровождается многими техническими трудностями. Более того, непосредственное потребление электрической энергии при высоком напряжении будет достаточно проблематичным для конечного потребителя.

Это способствовало разделению сетей на участки в соответствии с классом напряжения (т.е. уровнем). Трёхфазные сети, чья задача заключается в передаче больших мощностей, имеют такие классы напряжения:

  • свыше 750 кВ (1150 и 1500) (класс считается ультравысоким;
  • ниже 750 кВ (500 кВ, 400 кВ) (это европейский стандарт, сам класс называется сверхвысоким);
  • 330 кВ, 220 кВ, 150 кВ, 110 кВ – класс высокого напряжения;
  • 35 кВ, 33 кВ, 20 кВ — класс среднего первого напряжения;
  • 10 кВ, 6 кВ, 3 кВ – класс среднего второго напряжения;
  • 24 кВ, 22 кВ, 18 кВ, 15,75 кВ (считается наиболее распространенным) – класс напряжения на выводах генераторов;
  • 0,69 кВ (европейский промышленный стандарт), 0,4 кВ (основной стандарт), 0,23 кВ, 110 В (старый европейский стандарт) и ниже – класс низкого напряжения.

Классификация электрических сетей для классов напряжения

Классы напряжения классифицируют следующим образом:

  • в зависимости от области применения и назначения;
  • согласно масштабным признакам и размерам сети;
  • по роду тока.

Согласно первому пункту, существуют сети:

  1. Общего назначения (снабжение электричеством в бытовом, промышленном, сельскохозяйственном и транспортном формате).
  2. Автономного электроснабжения (для мобильных и автономных объектов, таких как, суда, космические аппараты и др.).
  3. Технологических объектов (для производственных объектов, а также других инженерных сетей).
  4. Контактные (с целью передачи электроэнергии на транспортные средства, например, локомотивы или трамваи).

Согласно второму пункту, сети бывают:

  1. Магистральными (для связи отдельных регионов с центрами потребления, характеризуются высоким и сверхвысоким уровнями напряжения, а также большими потоками мощности).
  2. Региональными (питаются от магистральных сетей и ориентированы на обслуживание крупного потребителя (город, район и т.д.), характеризуются средним и высоким уровнями напряжения, потоки мощности при этом большие).
  3. Районными (питание осуществляется от региональных сетей, собственных источников питания обычно не имеют, ориентированы на обслуживание малого и среднего потребителя), характеризуются низким и средним уровнями напряжения, а также незначительными потоками мощности;
  4. Внутренними (их задача заключается в распределении электроэнергии на небольших пространствах (в пределах города или отдельно взятого района), иногда имеют собственный (резервный) источник питания, характеризуются незначительными потоками мощности и низким уровнем для напряжения).
  5. Сетями самого нижнего уровня (электрическая проводка), питают отдельное здание, цех или помещение, речь идет о малых потоках мощности и низком уровне (бытовом) напряжения.

Согласно третьему пункту, ток бывает:

  • переменным трехфазным (передача тока идет по трем проводам со смещением фазы переменного тока в каждом из них на 120 градусов относительно других), каждый провод в нем считается фазой с определенным напряжением, выступающей в роли 4-го проводника;
  • переменным однофазным (ток передается по двум проводам за счет бытовой электропроводки от подстанции или распределительного щита);
  • постоянным током (для некоторых сетей автономного электроснабжения и ряда специальных сетей сверхвысокого напряжения).

Мощность трехфазного переменного тока выражается формулами:

Где $U$ и $I$ — это линейное напряжение и ток соответственно, а $varphi$ — угол сдвига фаз между векторами напряжений и токов для одноименных фаз.

Конструкция ЛЭП для разных классов напряжения

Конструкция ЛЭП считается индивидуальной для каждого из классов напряжений. Низковольтные линии, например, размещают на одиночных столбах, вкопанных в грунт. Шаговое напряжение здесь окажется не очень большим при аварийной ситуации, а защита будет обеспечена местным заземленным громоотводом.

Линии до 20 кВ по конструкции мало отличаются от вышеописанных. При этом увеличиваются размеры столбов, изоляторы, а также расстояние между кабелями. Экономически неоправданным здесь считается использование молниезащитных тросов, поэтому они не используются.

Начиная с линий 35 кВ, конструкция усложняется, в особо опасных районах (защита от грозы) подвешивают молниезащитные стальные тросы, столбы ставят из материалов с повышенной прочностью на излом, между проводами создают мощную изоляцию за счет специальных изоляторов, закрепленных на траверсах.

На ЛЭП с классом напряжения 110 кВ молниезащитные тросы подвешивают уже по всей длине. Линии на 330 кВ имеют высокие и мощные арочные столбы, при этом количество изоляторов здесь увеличено с целью блокировки возникновения электрической дуги и снижения коронных разрядов.

Классификация электрических сетей

Классификация электрических сетей может осуществляться:

По номинальному напряжению

Конфигурации схемы сети

По выполняемым функциям

По характеру потребителя

По конструктивному выполнению

По роду тока различают сети переменного и постоянного тока:

ЛЭП постоянного тока применяются для дальнего транспорта электрической энергии и связи электрических сетей с разными номинальными частотами или с различными подходами к регулированию при одной номинальной частоте (вставки линии постоянного тока или нулевой длины). В России ЛЭП постоянного тока почти не используется (Волгоград-Донбасс на 800 кВ, 376 км).

Для связи с другими странами применяют вставки из линий постоянного тока. За рубежом в разных странах существует несколько десятков ЛЭП постоянного тока, среди которых самой мощной является Итайпу-Сан Паулу (Бразилия) с номинальным напряжением 1200 кВ, длиной 783 км и пропускной способностью 6,3 млн кВт.

ЛЭП переменного трехфазного тока используется повсеместно. В России такая линия впервые была построена в 1922 г. (110кВ). Рост номинального напряжения ЛЭП напряжением переменного тока шел примерно с интервалом 15 лет. Первые экспериментальные участки ЛЭП-1150 кВ были построены в 1985 г.

Каждая сеть характеризуется номинальным напряжением. Различают номинальные напряжения ЛЭП, генераторов, трансформаторов и электроприемников.

Номинальное напряжение генераторов по условию компенсации потерь напряжения в сети принимают на 5% выше номинального сетевого напряжения. Номинальные напряжения обмоток трансформатора принимают равными номинальному напряжению сети или на 5% выше в зависимости от вида трансформатора и напряжения сети.

По величине номинального напряжения сети подразделяются:

на сети низкого напряжения (НН) – до 1000 кВ;

среднего напряжения (СН) – 3…35 кВ;

высокого напряжения (ВН) – 110…220 кВ;

сверхвысокого напряжения (СВН) – 330-750 кВ;

ультравысокого напряжения (УВН) – свыше 1000 кВ.

По конфигурации электрические сети различают:

2. Разомкнутые резервированные;

Разомкнутыми называют такие сети, которые питаются от одного пункта и передают электрическую энергию к потребителю только в одного направлении. Разомкнутые сети бывают магистральными, радиальными и радиально-магистральными (разветвленными). В разомкнутых резервированных сетях при нарушении питания по одной из ЛЭП вручную или автоматически включается резервная перемычка, по которой восстанавливается электроснабжение отключенных потребителей. Замкнутыми называют сети, питающие потребителей по меньшей мере с двух сторон.

Виды схем: а- магистраль; б- линия с равномерно распределенной нагрузкой; в- радиальная схема; г- радиально-магистральная схема.

Магистралью называется линия с промежуточными отборами мощности вдоль линии. В предельном случае с увеличением числа нагрузок получается линия с равномерно распределенной нагрузкой, т.е. плотность нагрузки на единицу длины одинакова для любого участка. Радиальные линии исходят из одной точки сети.

Замкнутыми сетями называются сети, имеющие контуры (циклы), образованные ЛЭП и трансформаторами.

Примеры замкнутых электрических сетей:

а- сеть одного напряжения; б- сеть двух напряжений.

К замкнутым сетям относятся также сети, имеющие несколько источников питания. Одной из таких схем является так называемая линия с двухсторонним питанием.

Пример замкнутых электрических сетей, имеющих несколько источников питания:

По выполняемым функциям различают:

Системообразующие сети напряжением 330-1150 кВ осуществляют функции формирования объединенных энергосистем, объединяя мощные электрические станции и обеспечивая их функционирование как единого объекта управления и одновременно обеспечивают передачу электрической энергии от мощных электрических станций. Эти сети осуществляют системные связи, т.е. связи очень большой длины между энергосистемами. Их режимом управляет диспетчер объединенного диспетчерского управления (ОДУ). В ОДУ входят несколько районных энергосистем – районных энергетических управлений (РЭУ).

Питающие сети предназначены для передачи электрической энергии от ПС системообразующей сети и частично от шин 110-220 кВ электрических станций к центрам питания (ЦП) распределительных сетей – районным ПС.

Питающие сети обычно замкнутые. Напряжение этих сетей ранее было 110-220 кВ. По мере роста нагрузок, мощности электрических станций и протяженности электрических сетей увеличивается напряжением сетей. В последнее время напряжение питающих сетей иногда бывает 330-500 кВ. Сети 110-220 кВ обычно административно подчиняются РЭУ. Их режимом управляет диспетчер РЭУ.

Распределительная сеть предназначена для передачи электрической энергии на небольшие расстояния от шин низшего “U” районных ПС к промышленным, городским, сельским потребителям. Такие распределительные сети обычно разомкнутые или работают в разомкнутом режиме.

Различают распределительные сети высокого (Uном>1кВ) и низкого (U 2 / 4 2 3 4 > Следующая > >>

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.