- Кремниевые диоды для понижения напряжения
- Снижение напряжения с 7.2 до 5.5 без регулятора
- Снижение напряжения с 7.2 до 5.5 без регулятора
- Электроника для всех
- Блог о электронике
- Диод. Часть 1
- Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.
- Как понизить постоянное и переменное напряжение — обзор способов
- Понижаем переменное напряжение
- Понижаем постоянное напряжение
- Супрессорный диод – электронная защита подавлением выброса напряжения
- TVS-диод: характеристика + обзор на супрессорный диод
- Супрессорный диод — расшифровка электрических характеристик
- Супрессорный диод – типичное исполнение приборов
- Супрессорный диод + функция шунтирующего действия
Кремниевые диоды для понижения напряжения
Снижение напряжения с 7.2 до 5.5 без регулятора
Тема раздела Бортовая электроника в категории Cамолёты — Общий; Здравствуйте уважаемые друзья! Наверное есть у некоторых проблема в бортовом аккумуляторе на 4.8 В на маленьких ДВС, дак вот: берем .
Опции темы
- Версия для печати
- Отправить по электронной почте…
- Подписаться на эту тему…
Снижение напряжения с 7.2 до 5.5 без регулятора
Здравствуйте уважаемые друзья! Наверное есть у некоторых проблема в бортовом аккумуляторе на 4.8 В на маленьких ДВС, дак вот: берем полимер на 7.2 вольта и три диода д226Б либо д226Х и соединяем их последовательно как показанно на рисунке! Диоды вызывают падение напряжения в цепи, причем-ЛИНЕЙНО. Если на полимере 7.6, то на выходе после диодов 6.5! Когда подключаем к приемнику, становиться-6.11(что вполне допустимо), а если начинаем ещё управлять одновременно всеми сервами, то напряжение падает до 5.8-5.5 в зависимости от сервомашинок! д226Б рассчитан на ток-400 мА и вполне легкий по весу-2.5 грамм. Конечно проще купить регулятор за 600 Р, но если нет такой возможности, то предлагаю сделать простейший метод. Ещё: сначало пробовал использовать резистор вместо диодов и не получилось-во первых греется, а во вторых не линейно снижает.
Если силен в электротехнике и электронике, то можешь запросто придумать как использовать самый примитивный стабилизатор напряжения (как в регулях, который используется для питания мк, управляющей транзистором) На чипдипе куча стабилизаторов размером 5 на 5 мм. На ресунке часть схемы слева — стабилизация. Можно даже без всего обвеса использовать.
Для полимера 2S минимальное допустимое напряжение (после достижения которого его надо ставить на зарядку) 6 вольт. Твоя «вычиталка» оставит из них 4.91 вольта. И главное надо будет жестко контролировать эти 6 вольт.
Ну если учесть что 400мА это одна,ну максимум 2 рульмашинки то, да, нормально. в чем проблема поставить хотя бы линейный стабилизатор на 5V? цена? в старой технике их можно нарыть на халяву. вот никогда не поверю что у человека у которого есть 226 диоды, не найдется крен5 в заначке.
между прочим вот такой стоит 7 (семь) условных енотов. на наши деньги
200 (двести) рублей.
не стоит оно того.
Вы представьте сколько времени вы будете садить до 6 вольт полимер емкость которого 1000 мА! Я ради интереса включил лампочку на 6В 300 мА! За 40 мин света полимер посадил с 7.6 до 7.12! На 3 часа полета без выключения приблизительно и хватит полетать без всяких переживаний. Ну согласитесь это же лучше чем сранные NI-Cd на 4.8В, из-за которых я разбил пилотажку(((( Да и вообще бортовой аккумулятор на 4.8 В Ni-Cd полное извращение и постоянное переживание как бы он не сел, а это естественно 100% дрова( пусть лучше уж двигатель заглохнет.
Ну если учесть что 400мА это одна,ну максимум 2 рульмашинки то, да, нормально. в чем проблема поставить хотя бы линейный стабилизатор на 5V? цена? в старой технике их можно нарыть на халяву. вот никогда не поверю что у человека у которого есть 226 диоды, не найдется крен5 в заначке.
между прочим вот такой стоит 7 (семь) условных енотов. на наши деньги
200 (двести) рублей.
не стоит оно того.
Подскажите а какая марка стабилизатора?
Тут обратная сторона медали — у меня в пульте ЛиПо стоят, а в ящике запасная НиКа — потому как летаю-летаю, неделя за неделей — вдруг раз и запищал передатчик. Ставлю запасную -а она уже саморазрядилась, блин.
У тебя будет подобное — помрет ЛиПо если не будешь перед каждым полетным днем ее заряжать ибо банально забудешь!
выбирайте
(это не значит что надо покупать именно в этом чипе дипе, но как каталог например или основа для дальнейших поисков — вполне )
для поиска можно еще воспользоваться
www.efind.ru
контроль каждой. банки сборки полимерок обязателен.
Тут обратная сторона медали — у меня в пульте ЛиПо стоят, а в ящике запасная НиКа — потому как летаю-летаю, неделя за неделей — вдруг раз и запищал передатчик. Ставлю запасную -а она уже саморазрядилась, блин.
У тебя будет подобное — помрет ЛиПо если не будешь перед каждым полетным днем ее заряжать ибо банально забудешь!
Конечно перед каждым полетом обязательно заряжать! Кстати приемник E-SKY EK2-0420! Вчера зарядил полимер, после диодов было аж 6.8! Включил борт и под нагрузкой стало 6.4, потом управляя всеми сервами сталоо 6.2! Дак вот решил ток всех сервок включая приемник у меня составил 350 мА! Один диод чуть чуть греется! Поставил опять лампу на 6В 300 мА, на полном заряженном полимере 7.8, а 6.3 после диодов, прошло 15 мин стало 5.9, потом ещё прошло 30 мин стало 5.5! Ну и 40 мин снизилось до 4.96! А на полимере стало 6.6! Это на постоянной нагрузке в течении 1.5 часа! Вообщем мне больше нравится чем НИКА. Допустим сделал 7-8 вылетов по 12 мин и полимер на зарядку. ну как думаете лучше же чем НИКА? Мне кажется намного и меньше переживании.
Конечно лучше:
а) по напряжению легко оценить степень заряда.
б) можно и нужно подзаряжать не дожидаясь полного разряда
в) удельная емкость легче, причем на сегодня это самые легкие батарейки из доступных.
Но все же лучше применять регулятор — не обязательно покупной, на небольшие токи легко подобрать трехногий стабилизатор, только надо с малым падением напряжения на нем (лоудроп), там всей обвязки — два кондера.
Последний раз редактировалось Володимир; 10.06.2009 в 12:25 .
Конечно лучше:
а) по напряжению легко оценить степень заряда.
б) можно и нужно подзаряжать не дожидаясь полного разряда
в) удельная емкость легче, причем на сегодня это самые легкие батарейки из доступных.
Но все же лучше применять регулятор — не обязательно покупной, на небольшие токи легко подобрать трехногий стабилизатор, только надо с малым падением напряжения на нем (лоудроп), там всей обвязки — два кондера.
Владимир спасибо) Сегодня выбрался на поляну полетал) Очень был рад) Вообщем сделал 5 вылетов по 12 мин! Потом после пяти вылетов проверил: на полимере 6.74, после диодов с включенным приемником: 5.13) Отлично) Единственное что диоды греются. Наверное надо попробовать д226А у них 600 мА)
Диоды пропускают 400 — 600 мАч. Т.е. сервы можно использовать только стандартные. Если использовать сильные сервы, которые естественно потребляют намного больше, то нужны другие диоды или это уже не возможно и нужно обязательно использовать ВЕС.
Спрашиваю применительно к автомоделям, где мало того, что сервы используются мощные, но и не редки моменты их мехвнического упора (при торможении) при котором естественно потребление особенно высоко.
БУду благодарен за нрамотный ответ
стандартные сервы потребляют 450-500мА каждая. например S3003 (до 2кг) может съесть до 700мА .В машины такие слабые не ставят наверное? Думаю что на руль ставят гораздо более мощные и жрут они гораздо больше. насколько? ну, для начала надо посмотреть документацию. например S9255 (6кг) на 5V съест до 1400мА, а вот hitec 5955(10кг) не подавится и 2,2А.
так что это решение ОДНОЗНАЧНО не для машин.
прожечь диоды током 2 одновременно перемещающихся серв (или даже одной)- как нечего делать.
надо объяснять что будет потом?
я вот не понимаю почему не взять нормальный стабилизатор,если уж так не хочется BEC покупать?
Последний раз редактировалось MxM; 11.06.2009 в 20:16 .
Падение напряжения на диоде зависит от тока нагрузки, и ничуть не линейно.
Даже если бы зависимость представляла идеальную прямую — все равно, «стабилизатор» из диодов — паршивый, в силу наличия этой самой зависимости.
Поковырялся — нашел. Обычный стабилитрон прокатит, я про него выше писал.
Последний раз редактировалось Crazy6opuc; 14.06.2009 в 18:33 .
Ошибся- та штука не прокатит. Прокатит вот эта:
Может он и паршивый, зато дешевый и реально работающий. У меня скоро год будет, как он нормально работает. Для удобства, используется вкупе с «пищалкой» — поисковиком. Пищалка — пищит при падении до 4.8 вольт. На нее заведено питалово с 2xLiPo ( я использую 250мАч и 360мАч сборки) через три 522 диода — получается около 6 вольт. На сам приемник R617FS и четыре сервы s3114 (все Futaba) питалово пущено через другие три диода — значительно более мощные (не знаю какие — подбирал из имевшегося брахала по внешнему виду и величине падения). Соответственно на приемник и сервы тоже идет 6 вольт, благо они допускают такое питание. Отдельные диоды — чтобы пищалка была развязана с «силовой» конструкцией и не пищала попусту под нагрузкой. Вся эта конструкция потребляет около 120-140 мАч на «холостом ходу» и до 450мАч, если дрыгать 3-4 мя сервами одновременно. Реальное летное время металки — 50 минут для 250 мАч и 85 минут для 360мАч. Диоды разумеется греются, но рука терпит, значит все ОК. Сделан маленький радиатор из обрезочка пивной банки.
Да, конечно, BEC куда лучше и на новый планер я буду ставить его (благо научился просадку и без пищалки, по полёту, чуствовать), но и это решение вполне себе рабочее.
Дополнение.
Позавчера купил нормальный полноценный регулятор на 5/6V (джампером переключается), с рабочей частотой 300KHz. Заявлен КПД в 92% и работа от напряжения от 6.8 до 22 вольт.
Ну поставил, вместо своих трех диодов. А через другие три диода по-прежнему пустил все с двух банок на пищалку. Вылетал два маленьких аккума (250-х) и оба аккума сели в аккурат также, как и в варианте с тремя диодами. Т.е. пищалка сработала на 45-47-й минуте. Вот тебе и 92% КПД нормального регулятора. А пищалка у меня пищит в аккурат, когда идет просадка до 6.8 вольт на две банки.
Единственный плюс регуля — то что, после просадки до 6.8 он еще позволял нормально работать машинкам. В схеме же с диодами — машинки начинали дрожать. Да только плюс это или минус я пока не понял. Ибо на большой высоте ты пищалку не слышишь, а вот расколбас планера — реально чуствуешь. А вот в схеме регулем — ничего сразу не почуствуешь. Значит и критическую разрядку ниже 3.4 вольт на банку прозеваешь, что здоровью и долговечности акка способствовать отнюдь не будет.
Добрый день. У меня тоже стабилитрон стоит на 5 вольт с 9 вольт. Все ОК. Просто массу стабилитрона надоть на радиатор, меньше греться будет.
(. ) Но ещё стоит подсчитать максимальный ток, при работе всех серв, т.к. максимальный ток стабилитрона ограничен.
Электроника для всех
Блог о электронике
Диод. Часть 1
Как то я не особо расписывал эту незатейливую детальку. Ну диод и диод. Система ниппель. Пропускает в одну сторону, не пропускает в другую, чего уж проще. В принципе да, но есть нюансы. О них, да немного о прикидочном выборе данной детальки и будет эта статья.
▌Клапан
В двух словах, в нашей канализационной электрике для сантехников диод это клапан. Вот типа вот такого:
И да, будет большим допущением считать, что клапан пропускает в одну сторону, а не пропускает в другую. На самом деле все несколько сложней. На самом деле у клапана же есть некая упругость пружины, так вот пока прямое давление не преодолеет эту пружину никакого потока не будет, даже в прямом направлении.
Для диода это справедливо в той же мере. Есть у диода такой параметр как падение напряжения. Оно для диодов Шоттки составляет около 0.2…0.4вольт, а для обычных диодов порядка 0.6…0.8 вольт.
Из этого знания следует три простых вывода.
1) Чтобы ток шел через диод напряжение на диоде должно быть выше его падения напряжения.
2) Какой бы ток через диод не шел, на нем всегда будет напряжение примерно равное его падению напряжения (собственно потому его таки зовут). Т.е. сопротивление диода нелинейно и падает с ростом тока.
3) Включая в цепь диод последовательно с нагрузкой, мы потеряем на нагрузке напряжение равное падению напряжения диода. Т.е. если вы в батарейное питание на 4.5 вольт для защиты от переполюсовки поставите диод, то потеряете от батареек 0.7 вольт, что довольно существенно. Ваше устройство перестанет работать гораздо раньше чем реально сядут батарейки. А батареи не будут высажены до конца. В этом случае лучше ставить диод Шоттки. У него падение ниже чем у простого (но есть свои приколы). А лучше вообще полевой транзистор.
До кучи пусть будет еще и график:
Это вольт-амперная характеристика диода. По которой наглядно видно, что открывается он примерно от 0.7 вольт. До этого ток практически нулевой. А потом растет по параболе вверх с ростом напряжения. У резистора ВАХ была бы прямолинейной в прямом соответствии с законом Ома. А в обратку диод не то чтобы не пропускает, но ток там совсем незначительный, доли миллиампера. Но после определенного напряжения диод резко пробивает и он начинает открываться, падение напряжения устанавливается где-то на уровне предела по обратному напряжению, а после и вовсе сгорает. Ведь рост тока, да большое падение напряжения на диоде означают большие тепловые потери (P=U*I). А диод на них не рассчитан. Вот и сгорает обычно он после пробоя. Но если ограничить ток или время воздействия, чтобы тепловая мощность не превышала расчетную, то электрический пробой является обратимым. Но это касается только обычных диодов, не Шоттки. Тех пробивает сразу и окончательно.
А вот и реальная характеристика диода Vishay 1N4001
Прямая ВАХ, показан один квадрант, рабочий. Начинается гдето с 0.6 вольт. При этом ток там мизерный. А дальше, с ростом напряжения, диод начинает резко открываться. На 0.8 вольтах ток уже 0.2А, на 1 вольте уже под 2.5А и так далее, пока не сгорит 🙂
Вот вам и ответ на вопрос почему нельзя светодиоды втыкать последовательно на источник напряжения без токоограничения. Вроде бы падения скомпенсированы, ну что им будет то? А малейшее изменение напряжения вызывает резкое изменение тока. А источники питания никогда не бывают идеальными и разброс по питанию там присутствует всегда. В том числе и от температуры и нагрузки.
И обратная ВАХ, напряжение в процентах от максимального (т.к. даташит на все семейство диодов, от 4001 до 4007 и у них разное обратное напряжение). Тут токи уже в микроамперах и ощутимо зависят от температуры.
▌Выбор диодов. Быстрые прикидки.
В первом приближении у диода нам интересные три параметра — обратное напряжение, предельный ток и падение напряжения.
Т.е. если вы делаете выпрямитель в сетевое устройство, то диод вам хорошо бы вольт на 400, а лучше на 600 пробивного обратного напряжения. Чтобы с хорошим запасом было.
С предельным током все тоже просто. Он должен быть не меньше, чем через него потечет. Лучше чтобы был запас процентов в 30.
Ну, а падение обычно нужно учитывать для малых напряжений, батарейного питания.
Открываем даташит на … пусть это будет 1N4007 (обычный рядовой диод) и ищем искомые параметры. И сразу же видим искомое, табличку предельных значений Maximum Rating или как то так:
IF(AV) прямой ток. Обозначается всегда как то так. Тут 1А. Предельный ток который этот диод тащит и не дохнет. Импульсно он протаскивает до 30А в течении 8.3мс (IFSM), скажем заряд конденсаторов через себя переживет.
Предельное обратное напряжение определяется параметрами:
VRRM — повторяющееся пиковое значение.
VRMS — действующее значение синусоидального переменного напряжения. На западе принято называть его среднеквадратичным. У нас постепенно тоже приходят к такому обозначению.
VDC — и просто обратное постоянное напряжение.
Ну, а падение смотрим по графикам в том же даташите под конкретный ток.
Есть еще диоды Шоттки, у них меньше внутренняя емкость и поэтому они во первых гораздо быстрей закрываются, что важно для импульсных преобразователей, работающих на большой частоте. А во вторых, имеют втрое ниже падение напряжение. Но, у них мало обратное пробивное напряжение. Классический диод Шоттки выглядит по даташитам примерно так:
Это 1N5819 стоящий в Pinboard II в преобразователе:
Падение напряжения можно измерить мультиметром, в режиме проверки диодов.
Он показывает падение в вольтах. И это падение обязательно надо учитывать, особенно в слаботочных цепях. Например, развязываете вы диодом какой-нибудь вывод микроконтроллера, с уходящим от него сигналом. Например, чтобы при подключении устройства в контроллер не потекло чего лишнего.
А сам контроллер (МК) должен подавать в устройство ХЗ логическую единицу. И, скажем, дает ее как 3.3 вольта. А если падение диода 0.6 вольт и у вас до Х.З. дойдет не 3.3 вольта, а меньше. А тут возникает вопрос, а воспримет ли Х.З. это как логическую единицу? Корректно ли это будет? Ну и, соответственно, решать проблемы если нет.
Светодиодов все это касается в той же мере. Только у них падение напряжения гораздо выше и зависит от цвета. Также, если хотите правильно вычислить ограничение резистора для светодиода, то измеряете его падение напряжения. Вычитаете из питания падение напряжения светодиода (или светодиодной цепи), а потом по полученному напряжению считаете по закону Ома сопротивление.
Например, имеем светодиод на с падением в 3 вольта. Его номинальный ток 10мА, а источник питания у нас 5 вольт. Итак, 5-3 = 2 вольта. Теперь на эти два вольта надо подобрать резистор, чтобы ток был 10мА. 2 / 0,01=200 ом.
Особенно важно правильно подбирать сопротивления для фонарей разных оптронов и прочих оптических датчиков. Иначе характеристики не предсказуемые.
Поэтому, кстати, нельзя включать светодиоды параллельно с общим токоограничивающим резистором. Т.к. диоды имеют разброс по характеристикам, даже если они из одной партии. А из-за малейшего отличия от соседей разница тока через один диод может быть весьма существенная. В результате один из диодов будет работать с перекалом, перегреется и сгорит. Токоограничивающий резистор ставят на каждый диод.
Во второй части этой статьи, которая уже написана, будет более детально расписаны остальные параметры и почему они образуются, исходя из полупроводниковой конструкции диода. А я пока картинки нарисую…
Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!
А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.
Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.
Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.
В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.
В переменном электрическ.
Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.
В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.
Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.
В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).
Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.
Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.
Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.
На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.
Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.
Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax
где: π — константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.
Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.
Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.
Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А». Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».
Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.
Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.
По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.
Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax
где: π — константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго — положительный):
Трёхфазные выпрямители
Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.
На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.
За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.
На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).
За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».
При конструировании блоков питания для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:
— максимальное обратное напряжение диода – Uобр ;
— максимальный ток диода – Imax ;
— прямое падение напряжения на диоде – Uпр .
Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.
Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.
Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.
Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.
Схемы выпрямителей предназначены для преобразования переменного — изменяющего полярность напряжения в однополярное — не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.
Как понизить постоянное и переменное напряжение — обзор способов
Эффективные способы понижения постоянного и переменного напряжения. Узнайте, как понизить напряжение с 220 до 110 или 36 Вольт, либо с 12 до 5 Вольт.
Согласно ПУЭ для питания переносного освещения должно применяться напряжение не выше 50 Вольт, а при работе в особо опасных и замкнутых пространствах – 12 Вольт (ПУЭ 6.1.16-18). При этом питание должно осуществляться через трансформаторы. Это нужно для того, чтобы исключить поражение электрическим током. Да и не всегда выходные параметры блоков питания или аккумуляторов позволяют подключить гаджеты или другую электронику. В связи со всем этим мы расскажем о том, как понизить напряжение постоянного и переменного тока до нужного вам значения. Содержание:
- Понижаем переменное напряжение
- Подключение бытовой техники из США на 110 В к сети 220 В
- Понижаем напряжение для питания низковольтных светильников
- Понижение напряжения в доме
- Балластный конденсатор для питания маломощных устройств
- Понижаем постоянное напряжение
Понижаем переменное напряжение
Рассмотрим типовые ситуации, когда нужно опустить напряжение, чтобы подключить прибор, который работает от переменного тока, но напряжение его питания не соответствует привычным 220 Вольтам. Это может быть, как различная бытовая техника, инструмент, так и упомянутые выше светильники.
Понижаем постоянное напряжение
При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.
Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.
А на плате он выглядит следующим образом:
На следующем видео автор демонстрирует такую переделку, только не на понижение, а на повышение выходных параметров.
На зарядных устройствах более совершенной конструкции используется регулируемый стабилитрон TL431, тогда регулировка возможна заменой резистора или соотношением пары резисторов, в зависимости от схемотехники. На схеме ниже они обозначены красным.
Кроме замены стабилитрона на плате ЗУ, можно опустить напряжение с помощью резистора и стабилитрона – это называется параметрический стабилизатор.
Еще один вариант – установить в разрыв цепи цепочку из диодов. На каждом кремниевом диоде упадёт около 0,6-0,7 Вольт. Так опустить напряжение до нужного уровня можно, набрав нужное количество диодов.
Часто возникает необходимость подключить устройство к бортовой сети автомобиля, оно колеблется от 12 до 14,3-14,7 Вольт. Чтобы понизить напряжение постоянного тока с 12 до 9 Вольт можно использовать линейный стабилизатор типа L7809, а, чтобы опустить с 12 до 5 Вольт – используйте L7805. Или их аналоги ams1117-5.0 или ams1117-9.0 или amsr-7805-nz и подобные на любое нужное напряжение. Схема подключения таких стабилизаторов изображена ниже.
Для питания более мощных потребителей удобно использовать импульсные преобразователи для понижения и регулировки напряжения от источника питания. Примером таких устройств являются платы на LM2596, а в англо-язычных интернет-магазинах их можно найти по запросам «DC-DC step down» или «DC-DC buck converter».
Напоследок рекомендуем просмотреть видео, на которых наглядно рассмотрены способы понижения напряжения:
Вот и все наиболее рациональные варианты, позволяющие понизить напряжение постоянного и переменного тока. Надеемся, предоставленная информация была для вас полезной и интересной!
Наверняка вы не знаете:
- Что делать, если низкое напряжение в сети
- Как сделать сетевой фильтр своими руками
- Как сделать трансформатор в домашних условиях
Супрессорный диод – электронная защита подавлением выброса напряжения
Главная страница » Супрессорный диод – электронная защита подавлением выброса напряжения
Супрессорный диод – полупроводник TVS (Transient Voltage Supression), как следует из перевода, обеспечивает подавление выбросов напряжения. Этот электронный компонент находит широкое применение в схемах различных современных устройств, включая компьютерное оборудование. Рассмотрим характеристику прибора с целью получения более подробных сведений о функциональности и возможностях.
TVS-диод: характеристика + обзор на супрессорный диод
Кремниевые TVS-диоды характеризуются в первую очередь наличием переход P-N, аналогичного стабилитрону. Однако переход выполнен с большим поперечным сечением, пропорциональным номинальной импульсной мощности супрессорного диода.
Эти электронные компоненты выступают шунтирующими устройствами, способными ограничивать скачки напряжения посредством низкоимпедансного лавинного пробоя P-N перехода.
На картинке ниже показана графическая кривая V — I, сильно напоминающая по форме графическую кривую стабилитрона. Но разница между электроникой здесь в том, что супрессорный диод разработан и предназначен для подавления переходных напряжений, тогда как стабилитрон выполняет функцию регулирования.
Графическая кривая электрической вольтамперной характеристики однонаправленного (однополярного) супрессорного диода в процессе действия
Импульсы большой длительности подавляются TVS-диодом за счёт увеличенной площади кристалла и свойств хорошего рассеивания тепла. Пороговые значения напряжения и мощности на супрессорном диоде допустимо увеличивать путём последовательного или параллельного соединения приборов.
Переходный процесс мгновенно шунтируется, что сопровождается не менее быстрым отводом чрезмерно сильного тока от защищаемого устройства. На картинке ниже демонстрируется простейшая схема защиты, где работает супрессорный диод, и результат отвода переходного тока на землю.
Демонстрационная схема работы однополярного TVS-диода: 1 — положительный и отрицательный входные (3) импульсы величиной 8 кВ в момент переходного процесса; 2 – импульсы положительный (12В) и отрицательный (0,6В) фиксированной формы волны на выходе (4)
Как и любой другой электронный компонент, супрессорный диод обладает электрическими характеристиками. Это своего рода набор параметров, определяющих критерии функциональности заключённой внутри прибора схемы.
Супрессорный диод — расшифровка электрических характеристик
Основными показателями электрических характеристик на супрессорный диод являются:
- напряжение холостого хода (VWM — Stand-Off Voltage)
- напряжение пробоя (VBR — Breakdown Voltage)
- ток утечки (ID — Leakage Current)
- ёмкость (C – Capacitance)
- прямое напряжение (VF — Forward Voltage)
- вольтажные ограничения (VC — Clamping Voltage)
Напряжение холостого хода — максимальное длительное постоянное или пиковое значение, которое допускается применять в стандартном диапазоне рабочих температур. Как правило, напряжение холостого хода на 10% ниже аналогичного параметра пробоя.
Напряжение пробоя — значение, измеренное на устройстве при заданном импульсном постоянном токе на характеристической кривой V / I в месте или рядом с местом возникновения пробоя (лавины). Также этот параметр известен как значение на устройстве в области пробоя до точки переключения при заданном токе пробоя.
Ток утечки — максимальный ток, который протекает через супрессорный диод при номинальном противостоянии напряжения холостого хода для заданной температуры. Также этот параметр известен как обратный ток утечки.
Ёмкость – параметр, связанный с применениями, обусловленными высокой скоростью передачи данных. Измеряется при определённой частоте и смещении. Высокий параметр ёмкости ухудшает сигналы.
Прямое напряжение – величина на супрессорном диоде в прямом проводящем состоянии при заданном токе.
Напряжение ограничения – величина на пике, измеренная на устройстве во время приложения импульсного тока для заданной формы волны. Следует иметь в виду: ток утечки и ёмкость не должны оказывать влияние на характеристики цепи.
Супрессорный диод – типичное исполнение приборов
Супрессорными диодами ограничиваются скачки напряжения до уровня допустимой величины при помощи действия шунтирующего вентиля (схемы автоматического шунтирования выхода источника питания).
Супрессорный диод шунтирующего типа начинает проводить, когда пороговая величина превышает допустимую величину.
Схематичное исполнение применяемых на практике супрессорных диодов: 1 – однонаправленного действия; 2 – двунаправленного действия; 3 – массив (матрица) управляющих элементов
Напротив, TVS-диод возвращается в непроводящее состояние, если напряжение падает ниже порогового значения. Скачки импульсов отсекаются до безопасного уровня с помощью шунтирования.
Электронные приборы TVS-диоды являются показательными примерами шунтирующих устройств. Существуют две основные категории шунтирующих конструкций:
- Ослабляют переходные процессы, предотвращая распространение в чувствительную цепь (стандартные массивы TVS-диодов).
- Отводят переходные процессы от чувствительных нагрузок, ограничивая остаточные напряжения (массивы управляющих диодов).
Супрессорный диод + функция шунтирующего действия
Шунтирующие устройства срабатывают в условиях превышения пороговых напряжений, в результате чего создают падение напряжения в открытом состоянии всего на несколько вольт. Этим процессом, собственно, и обусловлено название «шунтирующий вентиль».
Приборы TVS-диоды переходят в непроводящее состояние, когда управляющее напряжение и / или ток уменьшаются в условиях переходного процесса. Примерами устройств на основе шунтирующих вентилей являются газоразрядные трубки (GDT — Gas Discharge Tubes), а также тиристоры.
Большинство супрессорных диодов, которые используются в схемах защиты с низким энергопотреблением, имеют форму волны 8/20 мкс, как показано на картинке ниже. Приборы большой мощности характеризуются формой волны импульсного перенапряжения 10/1000 мкс.
График формы волны импульса (8/20 мкс): 1 – пиковое значение тока; 2 – временная точка; 3 – параметры формы волны; Ipp – импульсные токи; Tms – значения времени в мкс
Пиковая импульсная мощность на супрессорном диоде может составлять от 30 киловатт до 25 ватт. Номинальная мощность рассчитывается как произведение пикового импульсного тока и напряжения ограничения.
По мере уменьшения ширины импульсного импульса пиковая мощность импульса увеличивается логарифмически. Для более коротких импульсов TVS-диод способен обрабатывать более высокие пиковые импульсные токи.
Пиковая импульсная мощность импульса 3 мкс составляет примерно 1 кВт. Когда импульс скачка увеличивается, как на кривой выше до 10/1000 мкс, пиковая мощность импульса снижается до 60 Вт.
Конфигурации корпусов супрессорных диодов доступны различными размерами от больших модулей до миниатюрных изделий. Поддерживается конфигурация под условия поверхностного монтажа. Электронные супрессорные приборы надёжно защищают схемы с одной или несколькими линиями, однонаправленного или двунаправленного хода.