Мост ларионова выходное напряжение

Трехфазный мостовой выпрямитель — принцип работы и схемы

Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные.

Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра.

Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:

В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора.

Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:

Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже.

Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:

Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.

В данном конкретном случае — шесть фаз постоянного напряжения вместо трех, которые были в однотактной схеме. Вот почему требования к сглаживающему фильтру снижаются, и в некоторых случаях без него можно полностью обойтись.

Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов.

Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа.

Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды — в процессе участвуют одновременно два диода — по одному из каждой группы.

Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.

Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы).

Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими. Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки.

Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения. Вот, взгляните на схему с 12 диодами:

Здесь трехфазный трансформатор содержит две трехфазные вторичные обмотки, причем одна из групп объединена в схему «треугольник», вторая — в «звезду». Количества витков в обмотках групп отличаются в 1,73 раза, что позволяет получить со «звезды» и с «треугольника» одинаковые величины напряжения.

В данном случае сдвиг фаз напряжений в этих двух группах вторичных обмоток относительно друг друга получается равен 30°. Поскольку выпрямители включены последовательно, то выходное напряжение суммируется, и на нагрузке частота пульсаций оказывается теперь в 12 раз большей по отношению к сетевой частоте, при этом уровень пульсаций получается меньшим.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Трехфазная мостовая схема выпрямления (схема Ларионова)

Трехфазная мостовая схема выпрямления

(схема Ларионова)

Рисунок 1 – Трехфазная мостовая схема выпрямителя

Трехфазная мостовая схема в настоящее время нашла наиболее широкое применение. Это связано с тем, что она имеет лучшие технико-экономические показатели по сравнению с другими схемами.

Хорошее качество выпрямленного напряжения такое же, как и в шестифазной схеме выпрямления со средней точкой, достигается применением шести вентилей, но выпрямитель при этом работает с одной трехфазной обмоткой. То есть, при необходимости можно работать без трансформатора, непосредственно от трехфазной сети переменного тока. Мостовая схема может быть представлена двумя трехфазными схемами со средним выводом включенными последовательно. Первый выпрямитель (1) собран на тиристорах VS1, VS3, VS5 – которые объединены в катодную группу. Второй выпрямитель (2) – VS2, VS4, VS6 они объединены в анодную группу.

При последовательном включении выпрямителей выпрямленное напряжение удваивается :

кроме этого, при последовательном включении исключаются уравнительные токи – ненужен уравнительный реактор.

Мостовой тип устройства

Трехфазная мостовая схема выпрямления использует шесть диодов (или тиристоров, если требуется управление). Выходное напряжение характеризуется тремя значениями: минимальным U, средним U и пиковым напряжением. Полноволновой трехфазный выпрямитель похож на мост Гейца.

Обычный трехфазный выпрямитель не использует нейтраль. Для сети 230 В / 400 В между двумя входами выпрямителя. Действительно, между 2 входами всегда есть составное напряжение U (= 400 В). Неконтролируемое устройство означает, что нельзя отрегулировать среднее выходное U для этого входного U. Неконтролируемое выпрямление использует диоды.

Управляемый выпрямитель позволяет регулировать среднее выходное напряжение, воздействуя на задержки срабатывания тиристора (используется вместо диодов). Эта команда требует сложной электронной схемы. Диод ведёт себя как тиристор, загружаемый без задержки.

Выходное U трехфазного выходного напряжения. Всего 7 кривых: 6 синусоид и красная кривая, соединяющая верхнюю часть синусоид («синусоидальные шапки»). 6 синусоидов представляют собой 3 напряжения, составляющие U между фазами и 3 одинаковыми напряжениями, но с противоположным знаком:

U31 = -U13U23 = -U32U21 = -U12.

Красная кривая представляет U на выходе выпрямителя, то есть на клеммах резистивной нагрузки. Это U не относится к нейтрали. Она плавает. Это U колеблется между 1,5 В max и 1,732 Вmax (корень из 3). Umax — пиковое значение одного напряжения и составляет 230×1,414 = 325 В. Популярные модели мостовых выпрямителей представлены в таблице ниже:


Таблица характеристик популярных моделей мостовых выпрямителей.

Схема работы устройства

Мостовой выпрямитель состоит из четырёх диодов, соединённых в форме «моста», причём вторичная обмотка трансформатора соединяется через противоположные углы «моста», а сопротивление нагрузки соединяется через другие два угла. Выходное напряжение мостового выпрямителя в два раза больше, чем у двухполупериодного выпрямителя, поскольку через «мост» протекает воздействие всего напряжения вторичной обмотки.

В течение первой половины цикла переменного тока, ток протекает от отрицательной стороны вторичной обмотки через диод D1, через сопротивление нагрузки RL, через диод D3, к положительной стороне вторичной обмотки. Этот ток через RL представляет собой положительную полуволну.

В течение второй половины цикла переменного тока, ток протекает от отрицательной стороны вторичной обмотки через диод D4, через сопротивление нагрузки RL, через диод D2, к положительной стороне вторичной обмотки. Этот ток через RL представляет собой положительную полуволну.

Свойства трехфазного напряжения

Кривая, действующая только на резистивной нагрузке, неконтролируемое выпрямление (с диодами), не возвращается на ноль, в отличие от моночастотного устройства (мост Грейца). Таким образом, пульсация значительно ниже и размеры индуктора и / или сглаживающего конденсатора менее ограничительны, чем для моста Гейца.

Для получения ненулевого выходного U требуется по меньшей мере две фазы. Минимальное, максимальное и среднее значение напряжения. Численно, для сети 230 В / 400 В выпрямленное напряжение колеблется между минимальным напряжением: 1,5 В мин = 1,5 х (1,414×230) = 488 В, и максимальным: 1,732 Вмакс = 1,732 х (1,414×230) = 563 В.

Будет интересно➡ Что такое шаговое напряжение и чем оно опасно

Выходное напряжение трехфазного выходного выпрямителя (зум). 3-фазный полноволновый выпрямитель MDS 130A 400V. 5 терминалов: 3 фазы, + и -. Этот выпрямитель содержит 6 диодов.

Таким образом, можно суммировать следующие моменты:

  • 6 диодов, 2 диода на фазу — слабая пульсация по сравнению с одноволновым выпрямителем (мост Гейца);
  • среднее значение выпрямленного напряжения: 538 В для сети 230 В / 400 В;
  • нейтраль не используется трехфазным выпрямителем.

Принцип действия

Устройства выпрямления, детектирования и смешивания сиг­налов можно строить на основе мостовых схем. В этой схеме переменное напряжение, при­кладываемое к противоположным узлам диодного моста, преоб­разуется в пульсирующее выпрямленное напряжение, снимае­мое с двух других узлов. При включении нагрузочного резисто­ра RH выделяемое на нем пульсирующее напряжение является униполярным, что характерно для двухполупериодного выпря­мления.

При действии на входе полуволны переменного напряжения положительной полярности зажим Т1 будет положителен по от­ношению к зажиму 7Y В этом случае электроны поступают на зажим Т2 и выводятся через зажим Т1.

Читайте также  Стабилизатор напряжения какой лучше релейный или электронный?

Электроны от зажи­ма Т2 поступают на узел с диодами Д3 и Д4, причем только Д3 имеет нужное для проводимости направление включения. По­этому электроны движутся, пройдя через этот диод, к узлу с диодами Д3 .и Дь Полярность напряжения, приложенного к дио­ду Дь является запирающей, так что электроны от этого узла поступают на резистор.


Работа мостового выпрямителя

При протекании тока через резистор RH на последнем возникает падение напряжения (полярность указана на рисунке). После прохождения через резистор электроны достигают узла с диодами Д2 и Д4. Но только на диоде Д2 действует отпирающее напряжение, позволяющее электронам двигаться к выводу Т1, потенциал которого положителен при данной полуволне переменного тока. Диод же Д4 оказывается запертым, так как потенциал T2 отрицателен.

Мостовой выпрямитель — устройство или контур, проводящее ток в течение обеих половин цикла переменного тока. Поскольку мостовой выпрямитель использует всё вторичное напряжение, на выходе напряжение в два раза больше чем у двухполупериодного выпрямителя.

В течение следующего полупериода «изменения входного на­пряжения потенциал зажима Т1 отрицательный, а зажима Т2 положительный. Поэтому электроны от зажима TI перемещают­ся к узлу с диодами Д] и Д2, и, поскольку нужную для прово­димости полярность включения имеет лишь диод Д]? электроны проходят через этот диод и опять поступают на резистор RH, создавая на нем падение напряжения той же полярности, что и в первом случае. Далее электроны, как и прежде, поступают на узел с диодами Д2 и Д4, однако к зажиму Т2 они проходят че­рез диод Д4.

Интересно почитать! Что такое варистор и где его применяют.

Таким образом, поскольку мостовой выпрямитель использует каждый полупериод входного переменного напряжения и поворачивает фазу колебаний отрицательной полярности для получения униполярного пульсирующего напряжения на выходе схемы, он обеспечивает двухполупериодное выпрямление.

Существенным недостатком схемы двухполупериодного выпрямления со средней точкой является потребность в двух источниках входного напряжения. Такая потребность обусловлена тем, что один из выводов сопротивления нагрузки периодически переключается между двумя источниками напряжения, а другой вывод постоянно подключен к средней точке этих источников.

Однако необходимость в средней точке отпадет, если и второй вывод нагрузки при помощи второй аналогичной диодной схемы будет синхронно и противофазно подключаться к неиспользуемым на соответствующем интервале времени выводам источников питания.

Будет интересно➡ Как работает выпрямитель напряжения

Схемотехническая реализация такого метода представлена ниже. Эта схема носит название однофазного мостового выпрямителя и является, вероятно, самой распространенной из всех схем выпрямления, предназначенных для работы с однофазными источниками переменных напряжений.

Также как и в двухполупериодной схеме выпрямления со средней точкой, в мостовой схеме напряжение прикладывается к нагрузке в течение всего периода изменения напряжения Uвх. При этом его значение при Uвх=Uвх1+Uвх2 в два раза превышает выходное напряжение схемы рис. 3.4-8. Поэтому при одном и том же напряжении нагрузки в мостовой схеме к обратносмещенным диодам прикладывается напряжение в два раза меньшее, чем в схеме рис. 3.4-8 (Uобрmax=Uвхmax=π⋅Uнср/2.

Основная частота пульсаций выпрямленного напряжения в двухполупериодной мостовой схеме будет равна удвоенной частоте входного напряжения. Коэффициент пульсаций такой же, как и в двухполупериодной схеме со средней точкой: Kп=0,67.


Трехфазный мостовой выпрямитель

Особенностью мостовой схемы является то, что в ней последовательно с нагрузкой все время включено два диода, в то время как в описанных выше однофазной однополупериодной и однофазной двухполупериодной схемах такой диод один.

Поэтому при низких входных напряжениях (4…5 В) использование мостовой схемы может оказаться неэффективным (падение напряжения на диодах по величине будет сравнимо с выходным напряжением выпрямителя) — для повышения КПД обычно применяют двухполупериодную схему со средней точкой (возможен также переход к использованию диодов Шоттки с малым падением напряжения при прямом смещении).

С повышением напряжения разница в КПД схем уменьшается и определяющим фактором становится величина обратного напряжения, прикладываемого к запертым диодам в процессе работы выпрямителя. Поэтому при больших уровнях выходного напряжения обычно используют выпрямитель выполненный по мостовой схеме.

Однофазный полностью управляемый выпрямитель позволяет преобразовывать однофазный AC в DC. Обычно это используется в различных приложениях, таких как зарядка аккумулятора, управление скоростью двигателей постоянного тока и передняя часть ИБП (источник бесперебойного питания) и SMPS (источник питания с переключаемым режимом).

Все четыре используемых устройства — тиристоры. Моменты включения этих устройств зависят от пусковых сигналов. Выключение происходит, когда ток через устройство достигает нуля, и он обратный смещён, по крайней мере, на длительность, равную времени выключения устройства, указанного в листе данных:

  1. В положительных полуциклических тиристорах T1 и T2 стреляют под углом α.
  2. Когда T1 & T2 проводит Vo = Vs IO = is = Vo / R = Vs / R.
  3. В отрицательном полупериоде входного напряжения SC3 T3 и T4 запускаются под углом (π + α).
  4. Здесь выходной ток и ток питания находятся в противоположном направлении. T3 & T4 отключается при 2π.

Если мостовую схему выпрямления использовать совместно с источником, снабженным средней точкой, и средний выход каждой пары диодов соединить со средней точкой входного источника через собственную нагрузку, на выходе выпрямителя получится два равных, но обратных по знаку напряжения (рис. 3.4-10). Такая схема выпрямителя часто используется для питания устройств, построенных с применением операционных усилителей.

Мостовой схеме выпрямления (схеме Ларионова)

Трехфазный мостовой выпрямитель (рис. 3.2) состоит из трехфазного трансформатора и комплекта диодов, собранных по трехфазной мостовой схеме (схема профессора А.Н. Ларионова).

В схеме выпрямителя используется шесть диодов: VD1. VD6. Три диода (VD1, VD3, VD5) соединены в катодную группу. Их общая точка имеет положительную полярность. Из этих трех диодов проводящим будет тот, на аноде которого в данный момент наиболее высокий положительный потенциал. Три диода (VD2, VD4, VD6) соединены в общую точку анодами и образуют анодную группу.

Их общая точка имеет отрицательную полярность. Из диодов анодной группы проводящим будет тот, на катоде которого наиболее отрицательный потенциал. В каждый момент времени в рассматриваемой схеме выпрямителя, как и в однофазной мостовой схеме, открыты два диода: один — в катодной, а другой — в анодной группах. Каждый диод работает в течение одной трети периода (рис.3.2, г, д), что отражено на графиках для токов катодной (iVDк) и анодной (iVDa) групп.

Рисунок 3.2 — Трехфазный мостовой выпрямитель (схема Ларионова):

а – электрическая принципиальная схема;

б-е – диаграммы напряжений и токов

На рис. 3.2,б изображены кривые мгновенных значений напряжений в фазах вторичных обмоток трансформатора uа, ub, uc а на рис. 3.2, в — кривые выпрямленных напряжения ud и тока id. На интервале t1t2, равном p/3, напряжение фазы a (ua) имеет наибольшее положительное значение и, следовательно, на аноде диода VD1 потенциал наиболее высокий, т.е. диод VD1 открыт. Наибольшее отрицательное значение на этом же интервале имеет напряжение фазы b(ub), т.е. катод диода VD4 имеет наибольший отрицательный потенциал, отпирающий этот диод.

Таким образом, на интервале t1t2 к сопротивлению нагрузки через открытые диоды VD1 и VD4 будет приложено линейное напряжение между точками a и b (uab). Под действием этого напряжения ток будет протекать по цепи: + uа, VD1, Rd, VD4, —ub. В момент t2 (M1 — точка естественной коммутации диодов) мгновенные значения напряжений uв и uс равны, а далее напряжение uc будет более отрицательным. Это приведет к открытию диода VD6. Диод VD1 будет оставаться открытым, так как ua остается положительным.

На интервале t2t3, также равном p/3, будут открыты диоды VD1 и VD6, к сопротивлению нагрузки будет приложено линейное напряжение между точками а и с, и ток будет протекать в том же направлении по цепи: +uа, VD1, Rd, VD6, —uс. В момент t3 (точка N1) произойдет переключение диодов VD1 и VD3; диод VD3 откроется, так как uв будет равным ua и далее большим, а диод VD1 закроется.

Поскольку на нагрузку работают две последовательно соединенные вторичные фазовые обмотки трансформатора, то график выпрямленного напряжения ud представляет собой сумму огибающих фазовых напряжений работающих обмоток трансформатора.

Можно сформулировать правило: в схеме в любой момент времени открыты только два вентиля — а именно те, через которые к резистору нагрузки приложено наибольшее линейное напряжение

Период изменения основной гармонической переменной составляющей выпрямленного напряжения, как видно из рис.3.2, в, в 6 раз меньше периода изменения тока сети (Т1 = Тс/6). Следовательно, частота этой гармоники в 6 раз больше частоты тока питающей сети (f1 = 6fc). Несмотря на то, что схема получает электропитание от трехфазного трансформатора, кривая выпрямленного напряжения соответствует шестифазной схеме.

Читайте также  Как проверить скачки напряжения в сети?

Мгновенное значение выпрямленного напряжения равно линейному напряжению работающих одновременно фаз:

(3.3)

Среднее значение выпрямленного напряжения равно:

(3.4)

Приняв для удобства за начало отсчета точку О1 на огибающей ud (посредине между t1 = p/6 и t2 = 3p/6 на рис.3.2, в), выразим среднее значение выпрямленного напряжения через функцию косинуса

(3.5)

Основные соотношения, показатели качества выпрямления и энергетические параметры трехфазной двухтактной мостовой схемы выпрямления приведены в таблице 3.1.

Достоинства трехфазной двухтактной мостовой схемы выпрямления по сравнению с предыдущими схемами перечислены ниже .

1. Отсутствие вынужденного подмагничивания постоянной составляющей выпрямленного тока, что обеспечивает высокое значение коэффициента использования трансформатора.

2. Малая амплитуда обратного напряжения.

3. Возможность включения вентилей непосредственно в сеть переменного тока (без трансформатора), если напряжение имеет требуемую величину.

Основным недостатком данной схемы выпрямления является необходимость применения шести вентилей вместо трех по сравнению с предыдущей схемой Миткевича.

Трехфазные мостовые выпрямители находят наиболее широкое применение в ИВЭ РЭС при питании от трехфазных первичных источников.

Мост ларионова выходное напряжение

Как и обычно, в силовой электронике и электротехнике однофазное подключение нагрузок применяется при сравнительно малых мощностях. С увеличением уровня мощности используются трехфазные схемы.

Трехфазная схема выпрямителя со средней точкой изображена на рис. 4.1. В схему входит трансформатор с вторичными обмотками, соединенными звездой. Первичные обмотки соединяются звездой или треугольником. Пусть выпрямитель идеализированный, нагрузка активная.

Диоды схемы работают попеременно в течение одной трети периода переменного напряжения. В какой-либо момент времени проводит ток тот диод, потенциал анода которого по отношению к нулевой точке трансформатора выше, чем у других диодов. Переход тока с диода на диод происходит в моменты, соответствующие точкам пересечения синусоид фазных напряжений. Отсюда следует, что кривая выпрямленного напряжения схемы u d может быть получена как огибающая синусоид фазных напряжений вторичных обмоток трансформатора.

Среднее значение выпрямленного напряжения определяется на периоде повторяемости процессов в цепи нагрузки (т.е. на интервале 2 π 3 ):

U d = 1 2 π / 3 ∫ − π 3 π 3 2 ⋅ U 2 cos ⁡ v d v = 3 6 2 π U 2 = 1,17 U 2 .

Амплитуда переменной составляющей выпрямленного напряжения здесь меньше, чем в схеме однофазного выпрямителя со средней точкой, а частота переменной составляющей в три раза больше частоты переменного напряжения.

К каждому из диодов на интервале закрытого состояния через соответствующий открытый диод прикладывается линейное напряжение вторичных обмоток трансформатора. Например, к диоду VD1 на интервале открытого состояния диода VD2 прикладывается напряжение U 2 A − U 2 B , а на интервале открытого состояния диода VD3 — напряжение U 2 A − U 2 C . Наибольшее значение обратного напряжения равно амплитуде линейного напряжения.

Токи диодов будут одновременно и токами вторичных обмоток трансформатора. Серьезным недостатком схемы является, подобно и схеме однофазного однополупериодного выпрямителя, вынужденное намагничивание сердечника трансформатора. Во избежание насыщения из-за вынужденного намагничивания приходится увеличивать сечение магнитопровода, что приводит к завышению массо-габаритных показателей трансформатора.

Поток вынужденного намагничивания может быть исключен введением дополнительных обмоток (т.е. усложнением трансформатора) на вторичной стороне и соединением вторичных обмоток зигзагом. Однако лучшие результаты дает применение трехфазной мостовой схемы, не имеющей потока вынужденного намагничивания и обладающей рядом других преимуществ.

Совместив, подобно схеме на рис. 3.1, в, два выпрямителя, получим двухполярный выпрямитель, как показано на рис. 4.2.

Рис. 4.2 — Совмещение двух выпрямителей со средней точкой

Между точками а и b будет сформировано удвоенное выпрямленное напряжение. При подключении нагрузки к указанным точкам и отключении нулевого вывода вторичных обмоток трансформатора получим трехфазную мостовую схему выпрямления, приведенную на рис. 4.3.

Таким образом, для обеспечения одинакового значения выпрямленного напряжения в трехфазной мостовой схеме требуется вдвое меньшее значение напряжения вторичных обмоток трансформатора, чем в трехфазной схеме выпрямления со средней точкой.

Верхнюю группу диодов схемы (см. рис. 4.3) принято называть катодной, а нижнюю — анодной.

В мостовом выпрямителе одновременно пропускают ток два диода: один с наиболее высоким потенциалом анода относительно нулевой точки трансформатора из катодной группы диодов, другой — с наиболее низким потенциалом катода из анодной группы. Временные диаграммы работы диодов приведены на рис. 4.3. На схеме нумерация диодов соответствует последовательности их вступления в работу. Так, например, на интервале v 1 − v 2 , ток пропускают диоды VD1, VD6, на интервале v 2 − v 3 — диоды VD1, VD2 и т.д.

На интервале v 1 − v 2 выпрямленное напряжение определяется разностью фазных напряжений u 2 A и u 2 B , на интервале v 2 − v 3 — u d = u 2 A − u 2 C и т.д. Таким образом, выпрямленное напряжение имеет шестикратные пульсации переменной составляющей, хотя угол проводимости каждого диода такой же, как в трехфазной схеме со средней точкой. Амплитуда переменной составляющей выпрямленного напряжения наименьшая из всех рассмотренных выпрямителей.

В трехфазном мостовом выпрямителе нет вынужденного намагничивания сердечника трансформатора, так как ток в каждой вторичной обмотке протекает дважды за период, причем в противоположных направлениях.

Обратное напряжение, прикладываемое к диодам в закрытом состоянии, по форме повторяет обратное напряжение диодов в выпрямителе со средней точкой, но по величине оно в два раза меньше (при равных значениях выпрямленного напряжения).

В управляемых трехфазных выпрямителях угол управления α отсчитывается от точек естественной коммутации (от точек пересечения фазных напряжений). Схема управляемого выпрямителя со средней точкой приведена на рис. 4.4, а. На рис. 4.4, б, в показаны кривые выпрямленного напряжения u d для режима работы на активную нагрузку при двух различных углах управления. Естественно, что при этом кривая тока нагрузки повторяет по форме кривую выпрямленного напряжения.

Имеются две характерные области управления. Первая находится в диапазоне 0 α π 6 и характеризуется режимом непрерывного выпрямленного тока (см. рис. 4.4, б), а вторая начинается при углах α > π 6 , причем в кривой выпрямленного тока в этом случае возникают паузы, в течение которых мгновенные выпрямленные токи равны нулю (см. рис. 4.4, в).

aбвг

Среднее выпрямленное напряжение для первой области регулирования определяется следующим образом:

U d = 3 2 π ∫ π 6 + α π 6 + α + 2 π 3 2 ⋅ U 2 sin ⁡ v d v = 1,17 U 2 cos ⁡ α = U d 0 cos ⁡ α . (4.1)

Каждый тиристор схемы работает треть периода. Во второй области регулирования ( α > π 6 ) ток через тиристор обрывается при прохождении мгновенного выпрямленного напряжения через нуль. Длительность прохождения тока через тиристор меньше одной трети периода на величину α − π 6 .

Среднее выпрямленное напряжение в этом случае рассчитывается иначе:

U d = 3 2 π ∫ π 6 + α π 2 ⋅ U 2 sin ⁡ v d v = U d 0 1 + cos ⁡ ( π 6 + α ) 3 . (4.2)

Верхний предел интегрирования берется равным π по той причине, что далее следует интервал, где мгновенное выпрямленное напряжение равно нулю.

Как видно из (4.2), для трехфазной схемы со средней точкой при активной нагрузке предельным углом управления (при котором U d = 0 ) является угол 150°.

При работе на активно-индуктивную нагрузку ( L d → ∞ ) ток через каждый тиристор протекает всегда одну треть периода и имеет форму прямоугольника. Переход тока с тиристора на тиристор происходит в момент подачи отпирающего импульса на очередной вступающий в работу тиристор. Как видно из рис. 4.4, г, кривая выпрямленного напряжения для углов управления α π 6 ничем не отличается от случая работы схемы на активную нагрузку. При углах управления α > π 6 , как показано на рис. 4.4, г, в кривой выпрямленного напряжения появляются интервалы, когда u d принимает отрицательные значения. В результате при L d → ∞ предельный угол управления равен 90°, а выпрямленное напряжение при любом значении α определяется по (4.1).

Схема трехфазного мостового управляемого выпрямителя приведена на рис. 4.5, а. На рис. 4.5, б, в изображены диаграммы фазных напряжений вторичных обмоток трансформатора и кривые выпрямленного напряжения для трех значений угла управления при работе схемы на активную нагрузку ( L d = 0 ).

На рис. 4.5, б штриховкой показаны выпрямленные напряжения тиристорами анодной и катодной групп (относительно общей точки вторичных обмоток трансформатора), а на рис. 4.5, в — собственно кривая выпрямленного напряжения схемы для α = 30, 60 и 90°.

Следует отметить, что для обеспечения работоспособности схемы необходимо управлять тиристорами импульсами шириной более 60° или соответствующими сдвоенными импульсами. Это объясняется тем, что при использовании одиночных импульсов с шириной меньше 60° не обеспечивается пуск выпрямителя, так как не могут включиться одновременно два тиристора в анодной и катодной группах. Кроме того, при углах управления α > 60° в кривой выпрямленного напряжения и тока появляются паузы, и, следовательно, необходимо одновременно с подачей управляющего импульса на очередной вступающий в работу тиристор подать повторный импульс на соответствующий тиристор в противоположной группе или же использовать импульсы с длительностью более 60° (порядок вступления тиристоров в работу здесь такой же, как и диодов на рис. 4.3).

Читайте также  Как проверить напряжение без мультиметра?

Кривая выпрямленного напряжения и тока при изменении угла управления от 0 до 60° непрерывна. При углах управления более 60° выпрямленный ток прерывистый. Таким образом, при активной нагрузке мостовая схема, также как и схема со средней точкой, имеет два качественно отличных режима работы.

Для первого режима ( 0 α π 3 ) среднее выпрямленное напряжение может быть найдено следующим образом:

U d = 3 π ∫ π 3 + α 2 π 3 + α 2 ⋅ 3 ⋅ U 2 sin ⁡ v d v = 2,34 U 2 cos ⁡ α = U d 0 cos ⁡ α . (4.3)

Для второго режима ( α > π 3 ) среднее выпрямленное напряжение равно:

U d = 3 π ∫ π 3 + α π 2 ⋅ 3 ⋅ U 2 sin ⁡ v d v = U d 0 [ 1 + cos ⁡ ( π 3 + α ) ] . (4.4)

Из (4.4) следует, что U d становится равным нулю при α = 120 ° . Это значение угла управления и является максимальным при активной нагрузке.

В случае активно-индуктивной нагрузки ( L d → ∞ ) длительность проводящего состояния тиристоров всегда составляет одну треть периода и поэтому при α > 60 ° в кривой выпрямленного напряжения появляются отрицательные участки (аналогично другим схемам выпрямления, рассмотренным выше). Выпрямленное напряжение при этом для всего диапазона регулирования определяется по формуле (4.3), а максимальный угол управления составляет величину 90°.

Рассчитанные по (4.3) и (4.4) регулировочные характеристики трехфазного мостового управляемого выпрямителя приведены на рис. 4.6.

Как видно из графиков, в первой половине полного диапазона регулирования характеристика от типа нагрузки не зависит.

Необходимые для проектирования одно- и трехфазных выпрямителей расчетные соотношения сведены в табл. 3. Хотя соотношения определены для неуправляемых выпрямителей, они пригодны и для управляемых, т.к. при крайнем значении угла управления (α = 0) управляемый выпрямитель ничем не отличается от неуправляемого. Только коэффициент пульсаций при α ≠ 0 увеличивается по сравнению с данными табл. 2.

Таблица 3 — Основные расчетные соотношения для неуправляемых идеализированных (т.е. без потерь) выпрямителей при синусоидальном входном напряжении

Принцип действия и схема трехфазного мостового выпрямителя

Пользователям силовых цепей 380 Вольт в домашнем хозяйстве нужен пассивный (неуправляемый) трехфазный выпрямитель. Знание некоторых особенностей электронного устройства и существующих схем выпрямления окажется очень полезным. Это поможет владельцу силового оборудования эксплуатировать его более грамотно и рационально в течение длительного времени.

  1. Описание выпрямителей
  2. Принцип действия
  3. Однополупериодный многофазный выпрямитель
  4. Двухполупериодный выпрямитель
  5. Мостовые устройства
  6. Особенности трехфазного моста и варианты его построения
  7. Сравнение однофазных и трехфазных устройств

Описание выпрямителей

Трехфазный мостовой выпрямитель

Основное отличие устройств от своих однофазных аналогов проявляется в следующем:

  • первые устанавливаются в линиях 220 Вольт и служат для получения постоянных токов незначительной величины (до 50-ти Ампер);
  • трехфазные выпрямители используются в цепях, где рабочие (выпрямленные) токи существенно превышают этот показатель и достигают нескольких сотен Ампер.
  • в сравнении с однофазными образцами эти приборы имеют более сложное устройство.

Известны схемы выпрямления трехфазного напряжения, позволяющие получить на выходе минимальный уровень пульсаций.

В электротехнике они называются «трехфазные мостовые выпрямители», так как по способу открывания диодов, управляемых полярностью напряжения, они напоминают мост через реку с односторонним движением. Только направление потока электронов в них чередуется с частотой 50 Гц, недоступной для проезда машин поочередно в каждую из сторон.

Принцип действия

Принцип работы трехфазного выпрямителя

Принцип работы любого преобразователя синусоидального напряжения основан на выпрямительных свойствах особого полупроводникового элемента – германиевого или кремниевого диода. При протекании через него переменного тока положительная полуволна свободно «проходит» через рабочий электронный переход, смещенный в прямом направлении. При воздействии отрицательной полуволны электроны встречают препятствие в виде потенциального барьера, так что ток через переход течь не может.

В простейших схемах включения используется неполный цикл обработки переменных уровней, так как вторая полуволна безвозвратно теряется. Это заметно снижает преобразуемую мощность. Для сохранения полезной составляющей были разработаны 2-хполупериодные схемы выпрямления, в которых количество диодов увеличено до двух.

«Цепь полного цикла» может содержать 4 выпрямительных элемента, но такая схема относится к категории мостовых.

Однополупериодный многофазный выпрямитель

Сначала удобнее рассмотреть несложные в изготовлении трехфазные однополупериодные выпрямители, применяемые в простых и недорогих преобразовательных схемах. При их построении в каждую из фаз устанавливается по одному мощному диоду, обслуживающему только данную ветку.

Всего в однополупериодном образце выпрямительного прибора используется три полупроводниковых диода с подключенными к ним нагрузками. После изучения эпюр напряжений и токов, получаемых на выходе электрической цепочки, можно сделать следующие выводы:

  • эффективность (КПД) действия такого устройства очень низка;
  • полезная мощность теряется при обработке отрицательных полуволн всех трех фаз;
  • при использовании таких приборов получить нужные нагрузочные характеристики очень сложно.

Все эти недостатки однополупериодных схем вынудили разработчиков усложнить их, применив принцип двойного параллельного преобразования.

Двухполупериодный выпрямитель

Некоторые образцы силового оборудования работают только при большой величине выпрямленного тока, протекающего в нагрузке. Ее неспособны обеспечить однополупериодные выпрямители, что объясняется значительными потерями в них. Для повышения нагрузочной способности в цепях трехфазного тока все чаще применяются двухполупериодные выпрямительные приборы, содержащие по два диода на каждую из фаз.

Классическое включение в этом случае выполнено по схеме Ларионова, в честь которого названо и само выпрямительное устройство.

Анализ рабочих диаграмм такого выпрямителя наглядно свидетельствует о его бесспорных достоинствах. При работе этих схем используются как положительные, так и отрицательные полуволны, что поднимает КПД всего преобразователя. Объясняется это тем, что трехфазная структура схемы совместно с двухполупериодным выпрямлением обеспечивают шестикратное увеличение частоты пульсаций. За счет этого амплитуда сигнала на выходе после сглаживающих конденсаторов заметно возрастает (в сравнении с однополупериодным выпрямителем), а отдаваемая в нагрузку мощность повышается.

Мостовые устройства

Еще больше повысить эффективность преобразования переменного напряжения в постоянное позволяет «трехфазная мостовая схема выпрямления». Этот способ включения удобнее представить в виде совокупности двух однополупериодных схем с нулевой точкой, в которых нечетные диоды образуют катодную группу, а четные – их анодное объединение. В трехфазной мостовой схеме две ветки обработки полуволн различной полярности фактически объединены в единую систему.

Принцип действия трехфазного мостового выпрямителя проще всего представить так:

  • при действии на его входе переменного потенциала для каждой полуволны открытыми оказываются два диода из четырех, включенных как бы зеркально;
  • в первом случае выпрямляется положительная полуволна входного напряжения, а во втором – отрицательная;
  • в результате на выходе такой перекрестной схемы на одном полюсе моста всегда действует плюс, а на другом – минус.

Как в трехфазных выпрямительных мостах, так и в двухполупериодных схемах на диодных переходах теряется часть входного напряжения (на каждом диоде – не более 0,6 Вольта).

Общая потеря за один такт (положительный и отрицательный) в трехфазном мосте составит таким образом 1,2 Вольта. Разработчики выпрямительного оборудования всегда учитывают эти потери и для получения требуемой мощности на выходе заранее закладывают чуть завышенные входные параметры.

Диаграммы или эпюры напряжения мостовых схем – лучшее подтверждение тому, что этот способ включения диодов в выпрямительную цепь обеспечивает максимум передачи энергии. При этом небольшие потери напряжения на переходах чаще всего удается компенсировать за счет лучшей фильтрации во вторичных цепях.

Особенности трехфазного моста и варианты его построения

Мостовые схемы трехфазных выпрямителей имеют варианты исполнений, позволяющие улучшить параметры устройства. Усовершенствовать их удается за счет введения дополнительных вентильных элементов. В них устанавливают по 6, 9 или даже 12 выпрямительных диодов, включенных по схеме «звезда» или «треугольник».

Чем больше фаз (или пар диодов) используется в схеме выпрямителя, тем ниже уровень пульсаций выходного напряжения.

В качестве примера рассмотрим устройство с 12 выпрямительными диодами. Одна из групп в количестве 6-ти штук включается в этом случае по схеме «звезда» с общей нулевой точкой, а вторая – в треугольник (без земли). С учетом того, что выпрямители соединены последовательно, потенциалы на выходе системы суммируются, а частота пульсаций в нагрузке оказывается в 12 раз большей сетевого значения (50 Герц). После фильтрации поступающее к потребителю напряжение характеризуется более высоким качеством.

Сравнение однофазных и трехфазных устройств

При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:

  • первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз);
  • выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке;
  • с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.

Понять суть работы трехфазного выпрямителя совсем несложно. Для этого потребуется ознакомиться с основами работы вентильных устройств и проанализировать электрическую схему их включения. Знание принципа действия выпрямительных приборов поможет пользователю эффективнее использовать его в повседневной работе.