- Мультиметр не показывает постоянное напряжение
- Импульсный свет в фотографии
- Мультиметр DT-830C неверно показывает напряжение
- Мультиметр DT-830C неверно показывает напряжение
- Re: Простые человеческие слабости
- Re: Простые человеческие слабости
- Re: Мультиметр DT-830C неверно показывает напряжение
- Re: Мультиметр DT-830C неверно показывает напряжение
- Re: Мультиметр DT-830C неверно показывает напряжение
- Re: Мультиметр DT-830C неверно показывает напряжение
- Re: Мультиметр DT-830C неверно показывает напряжение
- Re: Мультиметр DT-830C неверно показывает напряжение
- Re: Мультиметр DT-830C неверно показывает напряжение
- Почему мультиметр показывает неправильно
- Почему мультиметр показывает неправильно
- Сообщества › Электронные Поделки › Блог › Калибровка мультиметров
- Визуально обнаруживаемые дефекты (заводской брак)
- Проверка дисплея
- Неполадки, связанные с проверкой сопротивлений
- Тестирование АЦП
- Неполадки в круговом переключателе
- Тестирование мультиметров, а также об ошибках измерения
- Как правильно проверить напряжение в розетке мультиметром
- Назначение
- Мультиметр
- Замер напряжения
- Поиск неисправности
- Распределительный короб
- Сила тока
- Одинарная розетка
- Парная розетка
- Заключение
- Видео по теме
- Как правильно пользоваться мультиметром
- Настройка мультиметра
- Где плюс у мильтиметра
- Проверка работы
- Правила использования мультиметра
- Измерение напряжений
- Измерение переменного напряжения
- Измерение постоянного напряжения
- Проверка радиодеталей мультиметром
- Проверка диодов
- Измерение сопротивления деталей
- Проверка конденсаторов
- Другие функции мультиметра
- Доработка щупов мультиметра
- Полезные видео
Мультиметр не показывает постоянное напряжение
Импульсный свет в фотографии
о накамерных вспышках, студийных моноблоках, генераторах и т.п..
- Вход
- Регистрация
- Ссылки
Текущее время: 24 июн 2021, 22:22
Мультиметр DT-830C неверно показывает напряжение
- Автор
- Сообщение
Мультиметр DT-830C неверно показывает напряжение
Re: Простые человеческие слабости
Re: Простые человеческие слабости
Re: Мультиметр DT-830C неверно показывает напряжение
Всякий ремонт полезно начинать с измерения напряжений в чувствительных узлах схемы. Судя по спецификации на «каплю» ICL7106, на которой построены все эти мультиметры, здесь это опорное напряжение VREF HI, которое должно быть 100 мВ на выводе REF HI.
Спецификация на ICL7106 подсказывает, что измеряемое напряжение отображается по формуле:
DISPLAY COUNT = 1000 (VIN/VREF),
где VIN — это напряжение после входного делителя, а VREF — опорное напряжение 100 мВ на выводе REF HI.
Re: Мультиметр DT-830C неверно показывает напряжение
Да, верно. Опорное напряжение 100 мВ.
Выставил опорное 100 mV +-0,8% естественно, прибор привирает немного, но терпимо.
На месте R должен стоять 2 МОм, а был 1 Мом. Я поставил сборку из 3-х резисторов(1,98 МОм).
Заменил R21(900) на 100 Ом, параллельно R22 впаял резистор 1 МОм.
Вот может пригодятся: схемы, платы.
P.S. здесь говорят что «капле» конец.
Re: Мультиметр DT-830C неверно показывает напряжение
Re: Мультиметр DT-830C неверно показывает напряжение
Re: Мультиметр DT-830C неверно показывает напряжение
Глубокий ремонт подобных мультиметров не рентабелен. Но иногда, жить не быть, а надо восстановить, невзирая на цену.
Было большое обсуждение по замене микроконтроллера ICL7106 на форуме https://pro-radio.ru/, но после пертурбаций потерялось. Спасибо, пользователь AK собрал всё, что было по теме:
Подборка на Дропбоксе
Замена кляксы ICL7106 в мультиметре.pdf
Замена кляксы ICL7106 в мультиметре MASTECH MY64.
Re: Мультиметр DT-830C неверно показывает напряжение
Re: Мультиметр DT-830C неверно показывает напряжение
Пригодятся? Не уверен.
Когда я сжёг по своей ошибке первый «мультик», очень переживал. А сейчас в ящике стола уже несколько штук лежат. Всё выбросить жалко.
Пищалка-прозвонка у вашего DT-830C есть, а вот таймер на основе HCF4013 (К561ТМ2) пригодится для экономии батарей. Особенно, если поврежденная «капля» будет потреблять больше нормы.
В статье имеется схема и рисунок печатной платы дополнения, а также схема прибора М-830B. Источник: Ремонт электронной техники, 2002, №04, стр.36.
Почему мультиметр показывает неправильно
Почему мультиметр показывает неправильно
Сообщества ›
Электронные Поделки ›
Блог ›
Калибровка мультиметров
Накопилось у меня штук 6 разных мультиметров в ценовом диапазоне от 5 до 20 долл. Точность по документации 1-3%… В реальности хуже. Некоторые новые, некоторым больше 10 лет. Показывают все немножко по разному, кому верить — непонятно. Ясное дело — нужно все откалибровать и привести к общему знаменателю. Возникает вопрос — что взять за эталон?
1. Образово — показательный дорогой откалиброванный мультиметр или
2. Источник образцового напряжения
Первый вариант стоит от 100-200 долл и выше. Не катит, да и жаба давит
Второй вариант намного дешевле и проще. В качестве источника напряжения можно собрать простейшую схему на микросхеме REF5050 ценою 3 долл. Микросхема представляет собой источник опорного напряжения 5 вольт с точностью 0.05%. Тоесть на два три порядка точнее самих мультиметров. Остается только подключить мультиметры к источнику опорного напряжения и крутилками внутри подстроить показания. В основе регулирови большинства мультиметров является подстройка опорного напряжения измерительного процессора внутри прибора. Опорное напряжение одно на все диапазоны измерения. Его вполне достаточно для 99% применения мультиметра. В дешевых приборах одна крутилка, в «дорогих» может быть и пять крутилок. Поскольку мы подстраиваем показания напряжения, то надо найти одну крутилку отвечающую за это дело. Искать желательно со схемой мультиметра в руках, чтобы не «понастраивать» того чтего не нужно.
начинаем с дешевого и древнего
вместо 5 показывал 4.95 … терпимо . Одна крутилка, установил точно на 5
4.89 … плохо, установил на 5
4.97 — отлично. Установил на 5 ( в приборе кстати 5 крутилок, не ошибитесь!)
совсем новый и самый дорогой)
5 воольт! не ожидал. Регулировка не требовалась.
Итого — получил все мультиметры с отличной точностью по напряжению.
Для авто наиболее удобен PEN мультиметр 8211 mastech, он же по умолчанию оказался наиболее точный в измерении напряжения. НО! Он же больше всех врет в измерении сопротивлений после 80 ком, завышает на полкилоома зараза. Некритично и несмертельно, но неприятно. Не регулируется в этом вопросе, возможно неудачный экземпляр. Остальные мультиметры сопротивления меряют нормально вполне.
Самый точный измеритель RC у меня оказался так называемый ПИНЦЕТ
Очень удобный, автоматический. К сожалению не меряет напряжение.
Визуально обнаруживаемые дефекты (заводской брак)
Проверить исправность прибора на начальной стадии ремонта удобнее всего путём осмотра его электронной схемы. Для данного случая разработаны следующие правила поиска неисправностей:
- необходимо тщательно обследовать печатную плату мультиметра, на которой могут иметься хорошо различимые заводские недоработки и ошибки;
- особое внимание должно уделяться наличию нежелательных замыканий и некачественной пайки, а также дефектам на выводах по краям платы (в районе подключения дисплея). Для ремонта придется применить пайку;
- заводские ошибки чаще всего проявляются в том, что мультиметр показывает не то, что он должен по инструкции, в связи с чем его дисплей обследуется в первую очередь.
Если мультиметр выдает неправильные показания во всех режимах и микросхема IC1 нагревается, то надо осмотреть разъемы для проверки транзисторов. Если длинные выводы замкнулись, то ремонт будет заключаться всего-навсего в их размыкании.
В общей же сложности визуально определяемых неисправностей может набраться достаточное количество. С некоторыми из них вы можете ознакомиться в таблице и затем устранить своими руками. (по адресу: http://myfta.ru/articles/remont-multimetrov.) Перед ремонтом необходимо изучить схемы мультиметра, которая обычно дается в паспорте.
Проверка дисплея
Если хотят проверить исправность и провести ремонт индикатора мультиметра, то обычно прибегают к помощи дополнительного прибора, выдающего сигнал подходящей частоты и амплитуды (50-60 Гц и единицы вольт). При его отсутствии можно воспользоваться мультиметром типа M832 с функцией генерации прямоугольных импульсов (меандра).
Для диагностики и ремонта дисплея мультиметра необходимо вынуть рабочую плату из корпуса прибора и выбрать удобное для проверки контактов индикатора положение (экраном вверх).
После этого следует присоединить конец одного щупа к общему выводу исследуемого индикатора (он расположен в нижнем ряду, крайний слева), а другим концом поочередно прикасаться к сигнальным выводам дисплея.
При этом все его сегменты должны загораться один за другим согласно разводке сигнальных шин, с которой следует ознакомиться отдельно. Нормальное «срабатывание» проверяемых сегментов во всех режимах свидетельствует о том, что дисплей исправен.
Дополнительная информация. Указанная неисправность чаще всего проявляется в процессе эксплуатации цифрового мультиметра, в котором его измерительная часть выходит из строя и нуждается в ремонте крайне редко (при условии, что соблюдаются требования инструкции).
Последнее замечание касается лишь постоянных величин, при измерении которых мультиметр хорошо защищён по перегрузкам. Серьёзные затруднения с выявлением причин отказа прибора чаще всего встречаются при определении сопротивлений участка цепи и в режиме прозвонки.
Неполадки, связанные с проверкой сопротивлений
В данном режиме характерные неисправности, как правило, проявляются в измерительных диапазонах до 200 и до 2000 Ом. При попадании на вход постороннего напряжения, как правило, сгорают резисторы под обозначениями R5, R6, R10, R18, а также транзистор Q1. Кроме того, нередко пробивается и конденсатор C6. Последствия воздействия постороннего потенциала проявляются следующим образом:
- при полностью «выгоревшем» триоде Q1 при определении сопротивления мультиметр показывает одни нули;
- в случае неполного пробоя транзистора прибор с разомкнутыми концами должен показывать сопротивление его перехода.
Обратите внимание! В других режимах измерения этот транзистор замкнут накоротко и поэтому влияния на показания дисплея не оказывает.
При пробое C6 мультиметр не будет работать на измерительных пределах 20, 200 и 1000 Вольт (не исключён и вариант сильного занижения показания).
Если мультиметр постоянно пищит при прозвонке или молчит, то причиной может быть некачественная пайка выводов микросхемы IC2. Ремонт заключается в тщательной пайке.
Тестирование АЦП
Прежде чем говорить о ремонте, необходимо провести проверку. Простым способом тестирования АЦП на пригодность к дальнейшей эксплуатации является прозвонка его выводов с использованием заведомо исправного мультиметра того же класса. Отметим, что для такой проверки не подходит случай, когда второй мультиметр неправильно показывает результаты измерений.
При подготовке к работе прибор переводится в режим «прозвонки» диодов, а измерительный конец провода в красной изоляции подсоединяется к выводу микросхемы «минус питания». Вслед за этим чёрным щупом последовательно касаются каждой из её сигнальных ножек.
Так как на входах схемы имеются защитные диоды, включённые в обратном направлении, после подачи прямого напряжения от стороннего мультиметра они должны открыться.
Факт их открытия фиксируется на дисплее в виде падения напряжения на переходе полупроводникового элемента. Аналогично проверяется схема при подключении щупа в чёрной изоляции к контакту 1 (+ питания АЦП) с последующим касанием всех остальных выводов. При этом показания на экране дисплея должны быть такими же, как в первом случае.
При смене полярности подключения второго измерительного прибора его индикатор всегда показывает обрыв, поскольку входное сопротивление рабочей микросхемы достаточно велико.
При этом неисправными будут считаться выводы, в обоих случаях показывающие конечное значение сопротивления. Если при любом из описанных вариантов подключения мультиметр показывает обрыв – это с большой вероятностью свидетельствует о внутреннем обрыве схемы.
Неполадки в круговом переключателе
Ремонт потребуется, если возникли неисправности, связанные с пропаданием контакта в круговом галетном переключателе. Это проявляется не только в том, что не включается мультиметр, но и в невозможности получить нормальное соединение без сильного нажатия на галетник. Объясняется это тем, что в дешёвых китайских мультиметрах контактные дорожки редко покрываются качественной смазкой, что приводит к их быстрому окислению.
При эксплуатации в пыльных условиях, например, они через какое-то время загрязняются и теряют контакт с переключающей планкой. Для ремонта этого узла мультиметра достаточно удалить из его корпуса печатную плату и протереть контактные дорожки ваткой, смоченной в спирте. Затем на них следует нанести тонкий слой качественного технического вазелина.
В заключении отметим, что при обнаружении заводских «непропаев» или замыканий контактов в мультиметре следует устранить эти недоработки, воспользовавшись низковольтным паяльником с хорошо отточенным жалом. В случае отсутствия полной уверенности в причине поломки прибора следует обратиться к специалисту по ремонту измерительной техники.
Тестирование мультиметров, а также об ошибках измерения
Проведено исследование работы цифровых мультиметров в режиме вольтметра переменного тока, и стрелочного прибора. В штатных и нештатных режимах, на токах различной формы — как симметричной полярности, так и при наличии постоянной составляющей.
Содержание публикации:
- Описание используемых приборов, и их начальная калибровка
- Тест на синусоидальном токе различной частоты
- Тест током прямоугольной формы
- Тест на прямоугольном токе с постоянной составляющей
- Тест сигналами произвольной формы, в т.ч. импульсным
- Многозначительный вывод
- Голосовалка
Список подопытных приборов, все они подключены параллельно:
Fluke 87-V — качественный автоматический мультиметр, способный вычислять действующее (среднеквадратичное) значение «true rms» измеряемых токов и напряжений.
UT-70C — рабочая лошадка, таскаемая везде и повсюду. Выпущен популярной фирмой Uni-T, тоже автоматический, но уже не «true rms».
И главные герои исследования — недорогой прибор MAS-830L фирмы Mastech, и совсем безродный DT-832 которые обычно насыпают ведрами на сдачу. Их я арендовал из разных мест, чтобы избежать возможных глюков конкретного единичного экземпляра.
Переменное напряжение 0.1 мВ — 1000 В
Разрешающая способность 1 мВ
Частоты до 20 кГц
Заявленная точность 0.7 % или 2 ед. мл. разряда
Переменное напряжение до 1000 В
Разрешающая способность 1 мВ
Частоты 40 — 400 Гц
Заявленная точность 1.5 % или 4 ед. мл. разряда
Mastech M830L
Переменное напряжение 0,1 В — 600 В
Разрешающая способность 10 мВ
Частоты 40 — 400 Гц
Заявленная точность 0.5 % или 2 ед. мл. разряда
Переменное напряжение 0,1 В — 750 В
Разрешающая способность 0.1 В
Частоты 40 — 400 Гц
Заявленная точность 1.2 % или 10 ед. мл. разряда
На принципиальной схеме цветом отмечено прохождение сигнала режиме измерения «3v».
Как видите это обычный вольтметр с диодным выпрямителем. Правда сделан очень надежно, с применением высококачественных компонентов.
И данный экземпляр действительно с военки:
Под осциллограммой сигнала находится статистика его параметров. Наиболее интересны для данного исследования те, что выделены яркостью на фото:
pkpk — полный амплитудный размах сигнала
RMS — среднеквадратичное значение
freq — частота исследуемого сигнала, или его импульсов
В колонке average наблюдаем среднее значение параметра, low и high — мин. и макс его значения в пределах выборки, sigma среднеквадратическое отклонение. Пользоваться будем только данными из колонки average.
Подаем на цифровые мультиметры 220 v из розетки. Стрелочный вольтметр пока отключим, т.к. ему еще не сделана профилактика после приобретения.
Также откалибруемся по постоянке, в том числе посмотрим что покажет стрелочный прибор. Подаем 2.5 v от блока питания. Осциллограф немного завышает — как оказалось по сравнению с флюком.
По этому шаблону организованы все фотографии в дальнейшем: сначала осциллограмма, под ней показания приборов.
Теперь убедившись в работоспособности приборов, начинаем тесты. Сигналы подаем от низковольтного ГСС типа Г3-36А. Конечно он не цифровик, но так даже лучше — ближе к реальным условиям.
Синусоидальный переменный ток различной частоты
Подаем напряжение 2.5 v на частотах 30Гц, 300 Гц, 3 кГц, 20 кГц, 50 кГц, и 150 кГц.
Первым как ни странно начал сливаться UT70C начиная с 3 кГц. В то время как недорогие мультиметры проскочили этот барьер — если конечно не считать что с самого начала их ошибка составляла целых 16% в сторону занижения. На 20 кГц их показания нельзя даже назвать оценочными, так что остались в адеквате только Флюк и стрелочный. Которые прошли 50 кГц еще около дела, но более высокие частоты ими измерять уже бессмысленно.
Тест током прямоугольной формы
Этот режим, как и все дальнейшие — являются нештатными для не «true rms» приборов, но всё же проведем исследование. Подаем примерно 2.5 v прямоугольного напряжения на частотах 30 Гц, 3 кГц, 30 кГц, и 100 кГц.
Показания дешевых мультиметров стали более адекватными на частотах до 3 кГц. А вот UT70C на герцах немного завысил, но выровнялся ближе к делу на 3 кГц. Более высокие частоты потянули только Флюк и стрелочный.
Прямоугольный сигнал с постоянной составляющей
Посмотрим как на них ведут себя приборы на частотах 300 Гц, 3 кГц, 50 кГц, и 200 кГц.
Очень эффектно показали себя недорогие мультиметры, для них частотный барьер кажется утратил актуальность. В то время как нормальные приборы до последнего пытаются работать мозгом процессором чтоб выжать нечто адекватное — простые вплоть до 200 кГц банально показывают амплитудное значение сигнала. Теперь понятно чем восторгаются искатели сверхъединичных технологий, и почему предпочитают именно дешевые приборы. По ним ведь легче всего получается вечняк…
Подаем сигналы сложной формы
Которые получены путем искажения прямоугольного напряжения катушками и конденсаторами.
На первом сигнале с основной частотой 5 кГц — адекватные показания только у Флюка и стрелочного прибора.
Короткие биполярные импульсы нормально переваривает Флюк (ну и конечно осциллограф тоже). А вот дешевые приборы их практически не видят. UT-70C дает ошибку более половины действующего значения, да и стрелочный тоже немалую.
Третий эксперимент на частоте 30 кГц — результат получше предыдущего, но ошибка тем не менее заметна.
В четвертом опыте снова подан ток с постоянной составляющей. Дешевые мультиметры и в этот раз выдали амплитудное значение, да еще и с некоторым превышением.
По завершении любых исследований, полагается делать вывод.
Всем критикующим «измеряли не тем, не так и не то»: статья, ИМХО, является продолжением цикла про строителей сверхъединичных генераторов и как раз и призвана показать, что все эти гении от физики и электротехники, пользуясь дешевыми мультиметрами, измеряют сферического коня в вакууме, а не реальную картину в своих генераторах.
Это не сравнительный обзор тестеров, это обзор тестеров применительно именно к вечнякам, когда подобными тестерами пытаются измерять что-то на мегагерцовых частотах (или постоянку со сложными высокочастотными выбросами).
Да, но это ясно только тем кто читал эти предыдущие статьи. Даже не столько сами статьи, сколько комментарии к ним.
Для тех кто не читал и открывает эту статью это выглядит именно как простой сравнительный тест мультиметров, и как вывод что «вот этим китайским г… пользоваться вообще нельзя», покупайте все Флюки а всему остальному место в мусорном ведре. Хотя вывод как раз из всех проведенных тестов можно совсем другой(противоположный) сделать — для своей области применения дешевые китайские тестеры даже на удивление адекватны — дают ровно то что заявлено производителями и сколько заплачено (с учетом цены даже пожалуй больше чем можно ожидать за такую цену)…
Как правильно проверить напряжение в розетке мультиметром
Розетка является частью бытовой электрической цепи. Статья даст пошаговую инструкцию — как можно проверить напряжение в розетке мультиметром. Также будут приведены примеры неисправностей этого электрического элемента и способы прозвонки устройства.
Также читатель узнает способ проверки силы тока оконечного устройства с включенным потребителем.
ВНИМАНИЕ! Работать с источниками высокого напряжения могут только специалисты, имеющие специальное образование и допуск к работам, выдаваемый ответственными организациями! Напряжение в розетке — это высокое напряжение, опасное для жизни!
Назначение
Электрическая розетка необходима для питания бытовых приборов током переменного напряжения. Стандартная величина напряжения этого элемента цепи составляет 220 вольт. Напряжение может быть немного выше или ниже указанного значения. Городские электросети поставляют потребителю ток напряжением от 210 до 240 В. Превышение этого порога, грозит бытовым приборам поломками, вплоть до полного выхода из строя.
Мультиметр
Перед тем, как проверить напряжение в розетке, необходимо знать, что такое тестер и как им пользоваться.
Мультиметр или тестер — это контрольно-измерительный прибор, необходимый для: измерения различных параметров электрического тока; прозвонки деталей, проводных и кабельных линий. Для работы с переменным током, прибор оснащен функцией замера величины этого параметра. На приборе есть специальное обозначение — волнистая линия
или аббревиатура ACV. С помощью современных мультиметров можно замерять напряжение от 200 до 1000 вольт. Максимальная величина напряжения зависит от модели устройства и степени его защиты.
Мультиметры оснащаются контрольными щупами, которые необходимы для: соединения измерительного прибора с контактами электроустановки; подключения прибора к общей электрической цепи.
Замер напряжения
Проверить мультиметром напряжение в розетке очень просто. Для этого необходимо сделать следующее:
- Измерительный прибор перевести в режим вольтметра. Выбрать опцию замера переменного напряжения круговой рукояткой с порогом измерений 600–1000 v. Каждый прибор имеет индивидуальный параметр порогового измерения, как отмечалось в статье выше.
- Красный измерительный щуп соединить с первым разъемом розетки.
- Черный измерительный щуп вставить во второй разъем.
На экране высветится значение переменного напряжения.
Если мультиметр не показал величину напряжения, то это значит, что электрическая цепь имеет какое-то повреждение. Далее будет дана пошаговая инструкция, как прозвонить розетку мультиметром.
Поиск неисправности
Розетка является частью электрической цепи. Эта цепь состоит из:
- Вводного провода от внешнего распределительного шкафа.
- УЗО или автомата для защиты цепи от коротких замыканий и перепадов напряжения.
- Счетчика контроля потребления электричества.
- Электрической проводки.
- Электрических распределительных коробок.
На любом из этих устройств может возникнуть неполадка с подачей электрического тока до оконечного устройства. Порядок проверки следующий:
- Если в помещении находится еще несколько розеток, то стоит проверить напряжение всех этих устройств. Если напряжение на них есть, то значит проблема заключается в проводе, питающем неисправный элемент или внутри распределительной коробки, использующейся для ответвления. Если все оконечные устройства неисправны, то это указывает на неисправность самой распределительной коробки.
- Далее необходимо определить, какой именно провод не доходит до устройства: нулевой или фазный.
Определить фазу в розетке можно с помощью мультиметра. Для этого нужно:
- Тестер установить в режим вольтметра для замера переменного напряжения до 600–1000 вольт (величина зависит от типа прибора).
- Красный контрольный щуп соединить с любым разъемом розетки.
- Если данных нет, то щуп соединяется с другим разъемом.
Фазный провод покажет напряжение 2.4 v. Если тестер показал фазу обоих разъемов, то это указывает на отсутствие или плохой контакт нулевого провода.
Далее необходимо проверить контактные соединения самого устройства. Проводится проверка следующим образом:
- Отключить питание цепи вводного провода. Для этого необходимо отключить защитный автомат.
- Открутить один или два крепежных винта крышки розетки.
- Снять защитную крышку.
- Ослабить винты крепления.
- Вынуть элемент из короба.
Далее стоит осмотреть крепление проводов к контактам. Часто, по причине нагрузки, концы проводов обгорают и обламываются. Нужно отсоединить оба провода, обрезать концы, заново зачистить изоляцию и соединить провода на место. После этого оконечное устройство крепится и собирается с соблюдением обратной последовательности.
После того как розетка была собрана, требуется включить подачу напряжения и повторить замер. Если напряжения нет, то значит стоит проверить состояние распределительной коробки.
Распределительный короб
Это важный элемент цепи питания. С помощью него проводится разводка проводов на выключатели, освещение и розетки. Разводка выполняется от второстепенного вводного провода до потребителей. Часто соединение подобных коробов выполняется при помощи скрутки или контакторов. Для проведения проверки необходимо:
- Отключить основное питание цепи.
- Открыть короб.
- Проверить места соединения.
Если обнаружено обгорание соединений или контактов, то оно устраняется путем зачистки проводов от изоляции и обновления контактов. Если повреждений нет, то нужно найти провод, идущий на поврежденную розетку и отсоединить его. Далее проводится прозвонка провода.
Выполняется процедура следующим образом:
- Отсоединенные провода скручиваются вместе.
- Тестер переводится в режим прозвонки.
- Измерительные щупы тестера соединяются с разъемами тестируемого элемента.
Оповещение звуковым сигналом укажет на целостность провода. Если сигнала нет, то провод считается поврежденным и требует полной замены.
Если тестируемый провод оказался целым, то далее нужно замерить напряжение, приходящее к самой распределительной коробке.
- Сначала проверить расположение соединений распределительного короба. Не должно быть соединений между проводами нуля и фазы.
- Подать питание от главного защитного автомата.
- Измерительный прибор перевести на режим замера переменного напряжения.
- Оба контрольных щупа соединить с контактами вводного провода.
На вводе должно быть напряжение величиной от 220 до 240 вольт. Если напряжения нет, то повреждение нужно искать в промежутке от главного автомата до распределительной коробки.
Данная инструкция поможет проверить напряжение в розетке мультиметром, а также провести диагностику цепи питания от распределительной коробки до оконечного устройства.
Сила тока
Сила тока измеряется в амперах. Подобная проверка необходима, для того чтобы знать, с какой мощностью работает тот или иной электрический прибор. Многие начинающие электрики на этом этапе делают ошибки из-за того, что не знают, как измерить силу тока мультиметром. Далее будут даны две инструкции о том, как проверить силу тока в розетке при помощи тестера.
Одинарная розетка
Проводить тест мощности тока оконечных устройств без подключения потребителя запрещается. Такой тест приведет к короткому замыканию. Для проверки одиночной розетки с подключенным потребителем необходимо:
- Обязательно отключить питание цепи.
- Разобрать тестируемый элемент.
- Отсоединить провода питания.
- Черный измерительный щуп соединить с нулевым проводом.
- Провод фазы от розетки соединить при помощи клеммы с одним контактом вилки потребителя.
- Красный измерительный щуп тестера соединить со вторым контактом вилки.
- Измерительный прибор перевести в режим замера мощности «10А».
- Включить питание цепи.
- Включить прибор потребитель.
На экране измерительного прибора высветится итоговый результат измерения. Долго держать тестер в цепи нельзя. Стоит сразу выключить потребитель и основной автомат.
Подобную схему очень просто собрать, и замерить мощность одинарной розетки. Далее будет дано описание измерения силы тока парных, параллельных элементов.
Парная розетка
Подобные оконечные устройства имеют один приходящий провод для подключения сразу двух потребителей. Для замера силы тока необходимо:
- Определить фазные контакты и отметить их.
- Выключить питание цепи.
- Нулевые контакты соединить перемычкой из провода.
- К контактам фазы подсоединить вилку электроприбора с помощью отдельных проводов и клемм.
- Щупы тестера поместить в разъемы с фазными выходами.
- Перевести тестер в режим «10А».
- Включить питание и прибор-потребитель.
Тестер покажет мощность потребления подключенного прибора.
Подобные проверки очень опасны, как для испытателя, так и для измерительного прибора. Любая ошибка схемы может привести к короткому замыканию и порче тестера. Наиболее простой замер силы тока проводится при помощи тестера с токоизмерительными клещами.
Для этого устройства не нужно разбирать оконечные устройства. Для измерения нужно включить прибор-потребитель, перевести тестер в режим замера мощности переменного тока и закрыть клещи вокруг провода питания электроприбора. Измерительный прибор сразу покажет конечный результат. Такая проверка безопасна для электрика, тестера и бытовой электрической цепи.
Заключение
В статье была приведена инструкция, как проверить напряжение в розетке при помощи мультиметра, а также была дана инструкция по замеру мощности тока. При работе с бытовой электрической цепью важно соблюдать правила безопасности. Всегда стоит помнить о том, что при выборе неправильного режима, тестер сам может стать виновником короткого замыкания.
Видео по теме
Как правильно пользоваться мультиметром
Настройка мультиметра
Для начала, нужно настроить мультиметр для работы.
Разъемы для щупов
В мультиметрах существует от 3 до 4 разъемов для щупов. В 90% измерениях понадобятся только два разъема. Это COM и VΩ.
Где плюс у мильтиметра
По умолчанию плюс — это красный провод, если вы его правильно подключили. Черный щуп мультиметра — это всегда минус, и он вставляется в разъем COM в независимости от режима работы.
Проверка работы
Убедитесь, что вы правильно подключили щупы.
Проверяем надежность подключения. Для этого переводим мультиметр в режим диодной прозвонки. В этом режиме измеряется падение напряжения на щупах.
Если замкнуть щупы, то прибор покажет ноль.
Замыкание щупов (ноль)
Единица обозначает бесконечность, то есть разрыв цепи или предел измерения.
Предел измерения (или обрыв)
Правила использования мультиметра
Сначала нужно ознакомиться с техническим паспортом устройства, изучить его возможности и пределы измерения.
Измерение напряжений
Во время измерения напряжений не дотрагивайтесь до металлического основания щупов.
Измерение переменного напряжения
Для измерения переменного напряжения в розетке переводим переключатель к значку V
Мультиметр выставлен на измерение переменного напряжения
Нельзя дотрагиваться до металлического основания щупов. Это опасно. Как можно заметить, на фотографии мультиметр показывает 222 В.
Проверка сетевого напряжения мультиметром
И именно поэтому был выбран предел 750 В. Если поставить меньше — прибор покажет бесконечность, и может выйти из строя.
Измерение постоянного напряжения
Чтобы измерить постоянное напряжение, нужно переключить прибор к значку V—.
Мультиметр выставлен на измерение постоянного напряжения
Так как в приведенном примере измеряется аккумулятор 18650, то наверняка его максимальное значение не может быть выше 5 В. Поэтому, можно смело ставить 20 В, если вы уверены в источнике и в своих предположениях.
Если при измерении постоянного напряжения вы увидите знак минус перед числом(-), то это значит, что перепутана полярность источника.
Измерение напряжения аккумулятора
То есть, черный щуп, который по умолчанию это минус, подсоединен к плюсу аккумулятора. И на красном щупе, соответственно, минус источника. Благодаря этому можно узнать полярность неизвестного источника.
Правильная полярность прибора и аккумулятора
Меняем местами щупы на аккумуляторе на противоположное, и теперь точно знаем, где плюс у аккумулятора, а где минус. Это очень полезная функция цифрового мультиметра. По сравнению с аналоговым, он не повреждается, если перепутать щупы местами, и можно точно определить, где плюс и минус источника напряжения.
Проверка радиодеталей мультиметром
С помощью мультиметра можно проверить практически любую деталь.
Проверка диодов
Чтобы проверить светодиод на исправность, подключите черный щуп к катоду, а красный к аноду.
Проверка работы светодиода мультиметром
Если светодиод небольших размеров, он загорится. Напряжения кроны хватит зажечь небольшого размера детали.
Измерение SMD диода на плате
При проверке p-n перехода диодов с помощью прозвонки на экране показывается не сопротивление, а именно падение напряжения.
Измерение сопротивления деталей
Переключаем прибор на шкалу со знаком Ω. Это измерение сопротивления.
Точка показывает предел выбранного измерения. На фотографии выбран предел 20 кОм (не 200 кОм, как показано выше).
Проверка сопротивления резистора
Проверка конденсаторов
Например, чтобы измерить емкость, нужно сначала переключить красный щуп в другой разъем, где обозначен конденсатор.
Переключаем прибор на шкалу с фарадами.
При измерениях емкостей красный щуп должен быть на плюсе, а черный на минусе. И перед измерениями электролитических конденсаторов их сначала нужно разрядить, иначе можно повредить измерительные цепи.
Измерение емкости конденсатора мультиметром
Другие функции мультиметра
Еще можно измерять постоянный и переменный ток. На шкале переключателя обозначения такие же, как и для напряжения. Переменный ток это А
Для этого переключите красный щуп на гнездо, где написаны mA. Если нужно измерить токи больше, то есть уже амперы, то красный щуп переключается в разъем, где указаны амперы.
Когда присутствуют такие надписи как «20 A MAX 10 SEC» это значит, что можно измерять токи не более 20 А не дольше 10 секунд. Иначе сгорит предохранитель.
Все остальные функции мультиметра зависят от его функций, стоимости и производителя. Можно измерять частоту тока, h21э транзисторов, емкости конденсаторов и т.п.
Доработка щупов мультиметра
Очень практичны иголки на концах щупов. Они позволяют измерять SMD детали. Достаточно припаять обычные иголки на концы мультимтера. Еще можно сделать пару щупов с крокодилами, чтобы можно было закрепить щупы на измеряемых проводах, или деталях.
Мультиметр это отличный измерительный прибор. На самом деле, он уступает специализированным, таким как ESR приборам, осциллографам, частотомерам и пр. Если вы начинающий радиолюбитель, то лучше всего купить самый простой и обычный мультиметр, такой, как DT 838. Его хватит на любые работы. В более продвинутых версиях есть удобные подставки и подсветка дисплея.
Конечно, можно купить и более совершенный, с измерением емкости конденсаторов, но шкала и точность по сравнению со специализированными приборами будет очень низкой. Все таки мультиметр нужен для оперативного и быстрого измерения напряжений и проверки радиодеталей. Не нужно требовать от мультиметра высокой точности и богатой функциональности.
Полезные видео