Напряжение нулевой последовательности это

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих.
Содержание
  1. Напряжение нулевой последовательности это
  2. Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл
  3. Назначение дополнительных обмоток ТН
  4. Сигнализация о замыкании на землю
  5. Использование 3Uo в составе защит
  6. Что является источником токов обратной и нулевой последовательностей?
  7. Токи нулевой последовательности
  8. Защита на токах нулевой последовательности
  9. Виды трансформаторов тока
  10. Напряжение нулевой последовательности
  11. Выбор уставок для ТЗНП
  12. Токи небаланса
  13. Реализация защит ТЗНП
  14. Максимальные токовые защиты
  15. Трансформатор тока нулевой последовательности
  16. Что такое ток нулевой последовательности
  17. Принцип работы
  18. Трехфазные цепи. Многофазные цепи. Симметричные и несимметричные режимы трёхфазных цепей. Метод симметричных составляющих, страница 9
  19. Токи нулевой последовательности
  20. Расчет несимметричных трехфазных цепей
  21. Библиографическое описание:
  22. Нулевая последовательность
  23. Сопротивление нулевой последовательности трансформаторов
  24. Сопротивление нулевой последовательности линии электропередачи
  25. Сопротивление нулевой последовательности машин и нагрузки
  26. Сопротивление нулевой последовательности электрического реактора

Напряжение нулевой последовательности это

Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

  1. Назначение дополнительных обмоток ТН
  2. Сигнализация о замыкании на землю
  3. Использование 3Uo в составе защит

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Что является источником токов обратной и нулевой последовательностей?

Одним из устройств, применяемых для защиты ЛЭП с напряжением 110 кВ, является токовая направленная защита нулевой последовательности (сокращенно – ТНЗНП).
Эти линии электропередач выполняются с эффективно заземленной нейтралью. В отличие от сетей 6-35кВ, у которых нейтраль изолирована, токи замыкания на землю достаточно большие, что вызывает необходимость фиксировать их и отключать с минимально возможной выдержкой времени. Но для этого нужно не просто определить факт наличия в системе замыкания на землю, но и найти линию, на которой оно произошло. Для этого такие защиты и делаются направленными.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов. При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу. Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.


Но так будет только при отсутствии в системе замыканий на землю. При междуфазных увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

В системах с изолированной нейтралью для выделения этих токов используется специальный трансформатор, надеваемый на кабель.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.

Также читайте: Измерительный трансформатор напряжения
Учитывая характер условий эксплуатации, различают трансформаторы:

  • для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;


Три трансформатора тока для 3-х фаз(А, B? C)

внутренние – применяемые внутри помещений;


ТТ для установки внутри помещений

встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).


Встроенные ТТ

В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.

С учётом способа установки их подразделяют на следующие типы:

  • проходной;
  • опорный.

По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Напряжение нулевой последовательности

Имея в наличии только информацию о токах нулевой последовательности, невозможно определить, где произошло КЗ: в самой линии, или «за спиной». В противоположном от линии конце находится либо распределительное устройство с другими подключенными к нему ЛЭП, либо трансформаторы. У них есть своя собственная защита, которая лучше разберется в ситуации.

Для того, чтобы определить направление на замыкание на землю, потребуется информация о напряжении нулевой последовательности. Оно берется с особых обмоток трансформаторов напряжения, соединенных в разомкнутый треугольник.

Это тоже векторная сумма, но не токов, а фазных напряжений. Она равна нулю в нормальном режиме и при симметричных КЗ, но при однофазных имеет определенную величину.

Далее в дело вступает реле направления мощности. На одну его обмотку подается напряжение нулевой последовательности, а на другую – ток, использующийся для работы земляной защиты. Срабатывание происходит при таком угле между этими величинами, когда мощность направлена в линию. В других случаях, при «за спиной», отсутствие срабатывания этого реле блокирует работу защиты.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.


Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Токи небаланса

Правильное сложение токов возможно только в случае полной идентичности характеристик трансформаторов тока. На этапе проектирования для защиты обязательно выбираются одинаковые обмотки трансформаторов с одинаковым классом точности, кратностью насыщения.

Кроме того, в цепи этих обмоток не должны быть включены другие устройства или приборы, нарушающие симметрию их нагрузки.

Но и этого может оказаться недостаточно. Если при всем при этом характеристики намагничивания оказываются разными, ток небаланса все-таки появляется. Если в нормальном режиме он не приводит к ложному срабатыванию защиты, то при симметричных КЗ, когда токи становятся в несколько раз большими, ток небаланса существенно возрастет.

Поэтому при замене трансформаторов тока, если не удается подобрать аналог для одного из них с полным соответствием вольт-амперных характеристик, то лучше сменить не один или два, а все три.

Реализация защит ТЗНП

Широко применялись еще с советских времен панели защит ЛЭП-110 кВ на базе электромеханических реле, например ЭПЗ-1636. В ее состав, кроме ТЗНП входит еще дистанционная защита и токовая отсечка.

Однако электромеханические реле эксплуатирующихся панелей давно выработали свой ресурс, а точечная их замена не всегда приводит к надежным результатам.

Поскольку со времен разработки данной релейной техники прогресс уже ушел далеко вперед, старое оборудование целиком меняется на панели или шкафы, включающие в себя микропроцессорные терминалы релейных защит.

Максимальные токовые защиты

Основной защитой здесь так же является МТЗ. Она должна быть всегда и обычно в проектах применяется без каких-либо дополнительных пусковых органов, хотя может комбинироваться с органами напряжения.

Также вы наверное заметили, что я отмечаю две важнейших цели МТЗ — основная защита своего присоединения и резервная защита смежных. В сетях 6-10 кВ МТЗ — это базовая фундаментальная защита, без которой невозможно надежное функционирование сети!

Токовая отсечка также обязательна на всех трансформаторах, где не применяется дифференциальная защита (ПУЭ 3.2.54), а это как раз наш случай. До мощности 6,3 МВА обычно дифф. защиту не устанавливают.

Защита от перегрузки в принципе выполняется всегда, хотя ПЭУ 3.2.69. говорит о том, что это нужно делать «…в зависимости от вероятности и значения возможной перегрузки». Я отметил ее как необязательную, но советую применять ее всегда, когда хватает токовых ступеней в устройстве. Также стоит отметить, что данную защиту может выполнять и вводной автомат 0,4 кВ так, как питание здесь одностороннее.

Токовая защита от ОЗЗ устанавливается, если есть ТТНП, а сам трансформатор подключается через кабель (что чаще всего и бывает). Иногда ей пренебрегают, считая, что повреждение на столь малом участке маловероятно. Однако, если терминал содержит эту функцию и есть возможность подключения к ТТНП, то защиту нужно вводить.

Трансформатор тока нулевой последовательности

Иногда в электроустановках может произойти разрушение изоляции, что приводит к утечкам тока. С целью контроля подобных токовых утечек было создано специальное устройство – трансформатор тока нулевой последовательности, нашедший применение также и в устройствах защитного отключения. Данные трансформаторы обнаруживают в нейтрали небаланс или токи нулевой последовательности. Если замыкается одна из фаз, происходит фиксация общих фазных токов, превышающих допустимое значение, после чего вся цепь своевременно отключается.

Что такое ток нулевой последовательности

В электрических сетях с напряжением от 6 до 35 кВ токи нулевой последовательности, как правило, связаны с однофазными замыканиями на землю. Эти токи могут возникать и при нормальных режимах работы, достигая значительной величины. Это приводит к ложным срабатываниям защитных устройств от замыканий на землю.

Трехфазные сети с переменным напряжением могут работать в различных режимах, в том числе и несимметричных. Для расчетов таких режимов используется метод симметричных составляющих, в котором фазные токи и напряжения представлены в виде суммы, включающей в себя прямую, обратную и нулевую последовательность.

В схемах автоматической и релейной защиты чаще всего используется прямая и нулевая последовательность. Прямая последовательность состоит из синусоидальных токов и напряжений, одинаковых по величине во всех трех фазах. Их угловой сдвиг составляет 120 градусов, а максимальные значения достигаются в порядке очереди – А, В и С. Компоненты нулевой последовательности также имеют одинаковую величину в каждой из трех фаз, однако у них отсутствует угловой сдвиг.

Когда установлен симметричный режим работы, в фазных токах и напряжениях должна быть только прямая последовательность. Если же зафиксировано заметное проявление элементов нулевой последовательности, это указывает на возникновение в сети аварийной ситуации, требующей обязательного отключения каких-либо участков.

В электрических сетях напряжением 6-35 киловольт настраивать защиту нулевой последовательности следует с особой осторожностью. Это связано с отсутствием глухозаземленной нейтрали, когда токи нулевой последовательности практически не превышают рабочих токов во всех подключениях. Из-за этого настройка защиты становится очень сложной или вообще невозможной, особенно при наличии в цепях множества линий с однофазными кабелями, неудачно расположенными между собой. Токи нулевой последовательности в нормальном режиме могут появиться в жилах и экранах однофазных кабелей. Частично влияние этих токов компенсируется подключением трансформаторов тока.

Принцип работы

Прежде чем рассматривать трансформаторы тока нулевой последовательности, нужно остановится на обычных трансформаторах. Все устройства этого типа разделяются на трансформаторы тока и напряжения. Они применяются для измерений токов и напряжений с большими величинами. На одну из обмоток подается ток или напряжение, которое требуется измерить, а на выходе второй обмотки снимаются уже преобразованные, как правило пониженные значения этих параметров.

Через трансформаторы тока наиболее часто подключаются магнитоэлектрические вольтметры и параллельные цепи, а трансформаторы напряжения соединяются с амперметрами и другими последовательными цепями.

Трансформаторы нулевой последовательности также относятся к токовым измерительным приборам. От других видов трансформаторных устройств они отличаются назначением и принципом работы. Основной функцией данных приборов является регистрация токовых утечек или отсутствия фазы при коротком замыкании в трехфазных кабелях. Когда в жилах таких кабелей возникает асимметрия токов, это приводит к появлению на выходе вторичной обмотки сигнала небаланса. Далее этот сигнал уходит к контрольному устройству, с помощью которого отключается питание поврежденного кабеля. Подключение трансформатора тока нулевой последовательности осуществляется не к каждой фазе. Он соединяется сразу со всеми жилами кабеля.

Таким образом, принцип работы этих устройств основан на выделении сигнала через трансформацию токов нулевой последовательности при однофазных замыканиях на землю. Они применяются в сетях с изолированной нейтралью и схемах релейной защиты. Благодаря нормированному коэффициенту трансформации, который может переключаться во вторичной обмотке, становится возможной эффективная и точная настройка релейной защиты.

Выпуск трансформаторов производителями осуществляется в различных модификациях. Основными техническими характеристиками являются номинальное напряжение и частота, коэффициент трансформации, испытательное одноминутное напряжение, односекундный ток термической стойкости вторичной обмотки. Они имеют различные габариты, обеспечивающие возможность подключения сразу к нескольким одножильным кабелям, сечением до 500 мм2.

Трехфазные цепи. Многофазные цепи. Симметричные и несимметричные режимы трёхфазных цепей. Метод симметричных составляющих, страница 9

Одним из устройств, применяемых для защиты ЛЭП с напряжением 110 кВ, является токовая направленная защита нулевой последовательности (сокращенно – ТНЗНП).
Эти линии электропередач выполняются с эффективно заземленной нейтралью. В отличие от сетей 6-35кВ, у которых нейтраль изолирована, токи замыкания на землю достаточно большие, что вызывает необходимость фиксировать их и отключать с минимально возможной выдержкой времени. Но для этого нужно не просто определить факт наличия в системе замыкания на землю, но и найти линию, на которой оно произошло. Для этого такие защиты и делаются направленными.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол, равный 120 градусов. При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу. Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.


Но так будет только при отсутствии в системе замыканий на землю. При междуфазных увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Расчет несимметричных трехфазных цепей

Библиографическое описание:

Соловьев, В. А. Расчет несимметричных трехфазных цепей / В. А. Соловьев. — Текст : непосредственный // Техника. Технологии. Инженерия. — 2020. — № 1 (3). — С. 17-22. — URL: https://moluch.ru/th/8/archive/46/1861/ (дата обращения: 14.06.2020).

Трехфазные системы передачи электрической энергии состоят из источников энергии, линий передачи, трансформаторов и электродвигателей. В результате какой-либо аварии (например, короткого замыкания или обрыва провода) или при несимметричной нагрузке на элементах системы (электродвигателях, трансформаторах, самой линии передачи) возникают несимметричные напряжения.

Распространенным случаем аварии в трехфазной системе является короткое замыкание на землю. Короткие замыкания, как правило, сопровождаются увеличением токов в поврежденных фазах до значений, превосходящих в несколько раз номинальные значения, а также понижением уровня напряжения в электрической сети.

Протекание токов КЗ приводит к увеличению потерь электроэнергии в проводниках и контактах, что вызывает их повышенный нагрев. Нагрев может ускорить старение и разрушение изоляции, вызвать сваривание и выгорание контактов, потерю механической прочности шин и проводов и т. п.

Снижение напряжения на шинах у потребителя может привести к опасным последствиям. Особенно чувствительна к снижениям напряжения двигательная нагрузка. При глубоких снижениях напряжения уменьшается вращающий момент электродвигателя до значений, меньших момента сопротивления механизма. Электродвигатель тормозится, что влечет за собой увеличение потребляемого им тока. При этом еще больше увеличивается падение напряжения в сети, вследствие чего может развиться лавинообразный процесс, захватывающий все большее количество потребителей электроэнергии [4].

Обобщая вышесказанное, можно сделать вывод, что расчет токов короткого замыкания является одной из главных задач энергетики. Необходимость определения токов КЗ в процессе эксплуатации может возникнуть:

‒ при изменении схемы питания энергетического объекта для проверки электрооборудования на термическое и электродинамическое действие токов КЗ, пригодности существующих установок релейной защиты, средств грозозащиты;

‒ при частичной замене электрооборудования на электростанции или подстанции, если намеченные к установке машины и аппараты по своим паспортным данным отличаются от демонтируемых;

‒ вследствие изменения условий эксплуатации электрического объекта;

‒ при создании нового энергетического объекта [3, c. 3].

Целью работы является рассмотрение метода симметричных составляющих и его практическое применение для расчета токов короткого замыкания.

Основным методом расчета несимметричных трехфазных систем является метод симметричных составляющих. Для описания основных положений метода симметричных составляющих, проведем расчет простой трехфазной цепи с несимметричным источником.

Параметры элементов: EA = 100∙ В; EB= 150∙ В; EC= 120∙ В; L = 6 мГн; R = 5 Ом. Найти токи: IA, IB, IC.

Рис. 1. Исходная схема цепи

Расчет токов методом симметричных составляющих. Раскладываем напряжения и токи, на напряжения и токи прямой, обратной и нулевой последовательности [1, с. 200]

где a = — оператор трехфазной системы; индексом 1 обозначается прямая последовательность; индексом 2 обозначается обратная последовательность; индексом 0 обозначается нулевая последовательность.

Cоставим для схемы на рис.1 уравнение по первому закону Кирхгофа:

IA + IB + IC = 0; (3)

Решая системы (1) и (2), найдем E1, E2, E0 и I1, I2, I0;

При подстановке уравнения (3) в систему (5) ток нулевой последовательности будет равен нулю. Следовательно, напряжения и токи цепи не будут содержать составляющую нулевой последовательности [2, с. 26].

Рассчитаем эквивалентное сопротивление:

ZЭ = jL + R = j 1,9 +5 = 5,3∙ Ом.

Составим эквивалентные схемы замещения цепи для прямой и обратной последовательности рис.2.

Рис. 2. Схема замещения цепи для прямой (а) и обратной (б) последовательности

Нагрузка симметрична поэтому эквивалентные сопротивления прямой и обратной последовательности равны: ZЭ = ZЭ1 = ZЭ2.

Находим токи прямой и обратной последовательности по закону Ома:

Подставим численные значения и найдем E1, E2:

E1 =∙(100∙ + ∙150∙ + ∙120∙) = 120,3∙В;

E2 =∙(100∙ + ∙150∙ + ∙120∙) = 32,1∙В.

Для проверки правильности нахождения E1, E2 построим векторную диаграмму.

Используя метод сложения векторов, по формулам системы (4) строим векторы E1, E2. Векторная диаграмма приведена на рис.3.

Рис.3. Векторная диаграмма источников ЭДС

Подставляем найденные значения в систему (2):

Расчет тока короткого замыкания линейного провода на землю. Исходная схема приведена на рис.4. Требуется аналитически провести расчет тока короткого замыкания линейного провода на землю.

Рис.4. Исходная схема цепи

Составим эквивалентные схемы замещения цепи для прямой, обратной и нулевой последовательности рис.5.

Рис. 5. Схемы замещения для прямой, обратной и нулевой последовательности

Место аварии на рис.4 окружено штриховой линией. Несимметричные напряжения, образовавшиеся в месте аварии, обозначены UA, UB, UC, а токи на землю в месте аварии IA, IB, IC. Из рисунка видно, что UA = 0, и IB = IC= 0. В соответствии с методом симметричных составляющих три фазных напряжения и три фазных тока представим через их симметричные составляющие:

где a = — оператор трехфазной системы; индексом 1 обозначается прямая последовательность; индексом 2 обозначается обратная последовательность; индексом 0 обозначается нулевая последовательность.

Схема на рис.5, а составлена для токов и напряжений прямой последовательности в фазе А, схема на рис.5, б составлена для токов и напряжений обратной последовательности в фазе В, схема на рис.5, в составлена для токов и напряжений нулевой последовательности в фазе С, Так как генератор дает симметричную систему ЭДС прямой последовательности EA, EB, EC, а ЭДС обратной и нулевой последовательностей не содержит, то ЭДС EAимеется только в схеме на рис.5,а, в схемах на рис.5,б,в ЭДС генератора отсутствует.

Утроение сопротивления заземления генератора и двигателя в схеме на рис.5,е для нулевой последовательности объясняется тем, что по нулевому проводу течет ток, в три раза больший, чем по фазовому проводу [1, c. 205].

Схемы на рис.5, а, б, в, заменяем их эквивалентами на рис.5, г, д, е, не затрагивая при этом источники ЭДС, напряжение на которых равно U1, U2, U0.

Параметры схемы на рис. 5, г (находим EЭ методом эквивалентного генератора):

Нулевая последовательность

Схема замещения нулевой последовательности по конфигурации сильно отличается от других схем. Существуют значительные отличия и в величинах сопротивлений.

Прежде всего, в месте КЗ напряжение равно напряжению нулевой последовательности.

Как видно из рисунка, схема замещения своим началом имеет точку КЗ, а ограничивается она путями протекания токов нулевой последовательности. Как уже отмечалось, симметричная система токов нулевой последовательности существенно отличается от прямой и обратной. Она представляет собой систему трех переменных токов, совпадающих по фазе и имеющих одинаковую амплитуду. Эти токи являются, по существу, разветвлением однофазного переменного тока, для которого три провода трехфазной цепи составляют один прямой провод, а обратным служит земля или четвертый (нулевой) провод.

Сопротивление нулевой последовательности трансформаторов

Большое значение имеют соединения обмоток трансформаторов сети и заземление их нейтралей. Чтобы из точки КЗ протекал в данную часть схемы ток нулевой последовательности, необходимо, чтобы у трансформатора имелась заземленная нейтраль. Обмотки, незаземленные и соединенные в треугольник, являются фильтрами нулевой последовательности и не дают возможности соответствующим токам протекать дальше по схеме или в землю.

В приведенном примере трансформатор слева (Т-1) имеет заземленную первичную обмотку и вторичную собранную треугольником. Токи нулевой последовательности достигают трансформатора и стекают на землю через его нейтраль, но не распространяются дальше в остальную часть левой схемы (вторичная обмотка трансформатора собрана треугольником, о ее последствии ниже). Между тем, путь токам справа не ограничивает трансформатор Т-2, т. к. его обмотки со стороны высокого и среднего напряжений имеют заземленную нейтраль, и токи нулевой последовательности продолжают путь в остальную правую часть схемы, но только потому, что там, в системе, есть заземленная нейтраль, показанная на принципиальной схеме соответствующим значком. Если бы этот значок показывал, что нейтраль не заземлена, то схему следовало бы закончить трансформатором.

Отдельно нужно рассмотреть обмотку низкого напряжения трансформатора Т-2. Она собрана в треугольник. Треугольник является фильтром для токов нулевой последовательности: они способны трансформироваться в него, но, протекая через обмотки фаз, замыкаются друг с другом. По этой причине на схеме показан путь для протекания токов через сопротивление низкой обмотки трансформатора на землю, хотя фактически там земли нет.

Вторичная обмотка трансформатора Т-1 также собрана в треугольник. Сопротивление нулевой последовательности, таким образом, складывается из сопротивления первичной обмотки, через которое токи непосредственно стекают в землю и из сопротивления вторичной, собранной в треугольник, в которой они замыкаются сами на себя. В итоге трансформатор в схеме показан своим полным реактивным сопротивлением.

На самом деле существует большое количество вариантов схем замещения трансформаторов в зависимости от схем соединения их обмоток, конструкции и их типа. Практически достаточно знать только приведенные два простых случая, сложные случаи запоминать нет необходимости. Достаточно просто воспользоваться справочной литературой.

Ниже приведены варианты.

Двухобмоточный трансформатор может быть представлен так:

На этих схемах предполагается, что замыкание происходит слева.

Первый вариант представляет собой схему соединения обмоток двухобмоточного трансформатора типа звезда с землей — треугольник. Это есть рассмотренный выше случай.

Однако на схеме указано еще сопротивление намагничивания. Но так как ток намагничивания достаточно мал (составляет около 1% от номинального), то можно считать, что это сопротивление настолько велико, что им можно пренебречь. Тогда трансформатор войдет в схему замещения только одним своим сопротивлением, которое рассчитывается обычной известной формулой.

Второй вариант представляет трансформатор с соединением вторичной обмотки в звезду и даже заземленную, но вот будут протекать токи нулевой последовательности через него или нет, зависит от того, есть или нет заземление нейтралей оборудования в остальной правой части схемы. Если есть, то трансформатор войдет в схему последовательно соединенным одним своим сопротивлением (рассчитанным как и для случая трехфазного КЗ). Если нет, то трансформатор следует представить сопротивлением первичной обмотки и сопротивлением намагничивания. Оно столь велико, что в приближенных расчетах часто принимают равным бесконечности, а значит, токи через трансформатор не текут.

Последние рассуждения справедливы и для третьего представленного варианта схемы замещения двухобмоточного трансформатора.

Обычно в расчетах этого бывает достаточно.

Между тем, величина сопротивления намагничивания сильно зависит от конструкции трансформатора. Все, что было сказано, подходит для группы трех однофазных трансформаторов и трехфазного с четырьмя или пятью магнитопроводами:

В трехфазных трехстержневых трансформаторах, где магнитные потоки нулевой последовательности замыкаются через изолирующую среду и кожух трансформатора, оказывается достаточно большой ток намагничивания. Реактивность в этом случае находится в пределах Хµ0 = (0,3 ч 1,0):

У трехобмоточных трансформаторов одна из обмоток, как правило, всегда соединена в треугольник, поэтому для них всегда Хµ = ∞.

Сопротивление нулевой последовательности линии электропередачи

В то время как при токе прямой (обратной) последовательности взаимоиндукция с другими фазами уменьшает сопротивление фазы, при токах нулевой последовательности она увеличивает его.

Токи нулевой последовательности, протекающие в тросах ЛЭП, оказывают размагничивающее действие, что приводит к некоторому уменьшению результирующего потокосцепления фазы. В зависимости от материала троса они оказывают разное влияние на уменьшение индуктивного сопротивления нулевой последовательности линии.

Средние значения соотношений между Х 0 и Х 1 для воздушных линий:

Средние значения соотношений между Х 0 и Х 1 для кабельных линий:

В ориентировочных расчетах для трехжильных кабелей сопротивления нулевой последовательности обычно принимают R 0 ≈ 10∙ R 1 ; X 0 = (0,35 ч 4,6)∙ Х 1 .

Сопротивление нулевой последовательности машин и нагрузки

Реактивность нулевой последовательности асинхронного двигателя, как и синхронных машин, определяется только рассеянием статорной обмотки и сильно зависит от типа и конструкции последней. Обычно сопротивление определяется опытным путем, а в задачах, если она действительно необходима для расчетов, бывает известна.

Э.д.с. генераторов симметричны и не являются источниками нулевой последовательности.

Если в задаче нагрузка указана как отходящая ветвь с шин высокого напряжения (например, 110кВ, 220кВ и т. п.), то в схеме замещения ее обычно НЕ учитывают на том основании, что нагрузок на такие напряжения не существует:

Нагрузка может существовать на более низком классе напряжения, следовательно, до нее на схеме должен находиться трансформатор, скажем, 110/10кВ со вторичной обмоткой, соединенной с сетью с изолированным режимом нейтрали (класс напряжений свыше 1000В до 100кВ не включительно). По этой причине токи нулевой последовательности до нагрузки не дойдут, а параметры трансформатора мы не знаем, следовательно, просто считаем схему соединения его обмоток таковыми, что токи нулевой последовательности через него не протекают.

Сопротивление нулевой последовательности электрического реактора

Сопротивление реактора рассчитывается так же (причем для всех трех последовательностей оно одинаково), как и в случае трехфазного КЗ, если он включен последовательно в электрическую сеть.

Однако, включенный в нейтраль трансформатора, он вводится в схему замещения (только нулевой последовательности, притом последовательно с сопротивлением трансформатора) своим утроенным сопротивлением. Это объясняется тем, что в нейтралях протекает утроенный ток, а падение напряжения на сопротивлении реактора должно быть обеспечено в однолинейной схеме замещения.

Со стороны обмоток, соединенных в треугольник или звезду без заземленной нейтрали, независимо от того, как соединены другие обмотки трансформатора, исключена возможность протекания токов нулевой последовательности.

Реактивность трансформатора нулевой последовательности в этих условиях:

,

а вопросы токов и напряжений такого вида замыкания рассматриваются в другом разделе