Падение напряжения на диодном мосту

В виду конструктивных особенностей многие новички сталкиваются с рядом сложностей, поэтому будет целесообразно детально разобраться, как проверить диодный мост на исправность.
Содержание
  1. Падение напряжения на диодном мосту
  2. Как проверить диодный мост на исправность?
  3. О диодных мостах
  4. Ищем диодный мост на плате
  5. Проверка индикаторной отверткой
  6. С помощью лампочки и батарейки
  7. Методика проверки мультиметром
  8. Определите назначение выводов.
  9. Установите щупы мультиметра.
  10. Используйте минусовый щуп мультиметра.
  11. Поменяйте щупы тестера местами.
  12. Используйте плюсовой щуп мультиметра.
  13. Используйте черный щуп.
  14. Видео по теме
  15. Падение напряжения на диодном мосту
  16. Как проверить диодный мост
  17. Как проверить диод Шоттки любым мультиметром
  18. Назначение
  19. Принцип действия
  20. Разновидности
  21. Проверка
  22. Один диод
  23. Проверка в гнезде «PNP/NPN»
  24. Проверка сдвоенных элементов
  25. Диодный мост
  26. Проверка на плате
  27. Заключение
  28. Видео по теме
  29. Что такое диодный мост, принцип его работы и схема подключения
  30. Для чего нужен диодный мост и как он работает
  31. Обозначение диодного моста и схема подключения
  32. Основные технические характеристики
  33. Разновидности диодных мостов и их маркировка
  34. Преимущества и недостатки
  35. Диодный мост и двухполупериодный выпрямитель.

Падение напряжения на диодном мосту

Как проверить диодный мост на исправность?

Современные бытовые приборы и различные устройства содержат огромное количество радиоэлементов, которые обеспечивают их исправную работу и комфортное существование обывателей. Однако вся техника, эксплуатируемая человеком, иногда выходит со строя и во время ее ремонта приходится проверять состояние радиодеталей.

Одной из наиболее распространенных составляющих, которую вы можете испытать на исправность самостоятельно, является диодный мост. В виду конструктивных особенностей многие новички сталкиваются с рядом сложностей, поэтому будет целесообразно детально разобраться, как проверить диодный мост на исправность.

О диодных мостах

Прежде чем разбираться в способах проверки диодных мостов на исправность, вам нужно как следует изучить общую информацию об устройстве и принципе его работы. Наиболее простой вариант, с практической точки зрения, это четыре выпрямительных диода спаянные в единую схему. Более сложным с точки зрения диагностики является диодная сборка – заводской четырехполюсник, внутри которого набраны четыре полупроводниковых элемента. Но, схематическая реализация и первого, и второго варианта происходит одинаково, принципиальная схема обоих диодных мостов приведена на рисунке ниже:

Рис. 1. Принципиальная схема диодного моста

Как видите, в диоды собираются в мост по такому принципу, в одной точке подключатся катоды двух соседних диодов, а в другой, аноды соседних диодов, с каждого из них снимается полуволна отрицательной или положительной части синусоиды на входе. Другие две точки, имеющие и анодный и катодный вывод диода, предназначены для подачи переменного напряжения. На электрической схеме или непосредственно на диодном мосте выводы переменного напряжения обозначаются буквенной маркировкой AC или значком «

», а положительный и отрицательный вывод постоянного напряжения «+» и «– » соответственно.

Ищем диодный мост на плате

Проверять можно как установленный на плате диодный мост, так и выпаянный из нее, второй вариант считается более точным, поскольку на проверку не влияют другие элементы цепи, но следует помнить, что некоторые методы проверки можно реализовать только в рабочем устройстве. Если конструкция прибора довольно сложная или плата переполнена деталями, диодный мост целесообразно искать в таких локациях:

  • в блоках питания;
  • во вторичных цепях трансформаторов;
  • на выходе генераторов;
  • перед аккумуляторными батареями.

После обнаружения диодного моста, необходимо осмотреть его корпус или каждый диод в отдельности. Опытный электрик для себя автоматически заметит расположение вводов, но если вам сложно ориентироваться на память, можете нарисовать схему применительно к вашей ситуации. На такой схеме нужно отобразить плюсовую клемму и отрицательную клемму, клеммы ввода переменного напряжения.

Также следует отметить, что неисправность может заключаться не только в диодных мостах, поэтому при обследовании стоит внимательно осматривать все элементы и детали, а при проверке не исключать целостности объекта.

Проверка индикаторной отверткой

Это наиболее простой вариант опробования, который даст обще представление о состоянии диодного моста и всей схемы в целом. Для работы вам понадобится только индикатор, вся процедура выполняется под напряжением, поэтому следует соблюдать предельную осторожность:

  • Коснитесь жалом отвертки поочередно к каждому выводу переменного напряжения AC диодного моста. Если лампочка не горит, то это свидетельствует о неисправности цепи до диодного моста – обрыве обмотки, поломке зарядного устройства и т.д. Если же лампочка горит, значит напряжение на мост поступает нормально.

Рис. 2. Опробование индикаторной отверткой

  • Также коснитесь отверткой к плюсу клеммы – если лампочка загорится, то диодный мост нормально пропускает положительные полупериоды, соответственно, на этом выводе присутствует потенциал. Если не горит, присутствует повреждение диодного моста.
  • Ту же процедуру повторите с минусовой клеммой. Обязательно разделяйте проверку на оба вывода выпрямительного блока, так как неисправность может присутствовать в любом диоде и в любой ветви.

Как видите, в данном примере была использована отвертка с изолированным стержнем. Это связанно с необходимостью выполнять работу под напряжением, кода вы можете перекрыть металлической деталью разные части электроустановки, что повлечет за собой крайне неприятные последствия. Существенным недостатком метода является его низкая информативность и ограничение по величине рабочего напряжения — так как индикатор рассчитан на номинал 220 В, то использовать его для низковольтных цепей не получится.

С помощью лампочки и батарейки

Довольно простым способом, позволяющим проверить диодный мост, является использование батарейки и электрической лампочки, которые практически каждый может найти у себя дома. Этот метод не сложнее предыдущего, лампа выступает в роли контрольки, а батарейка в качестве источника питания пониженным напряжением. Батарейку подбирают в соответствии с параметрами самого диода. Для проверки исправности необходимо разделить диоды из моста по отдельности и собрать несложную схему:

Рис. 3. Схема проверки лампочкой и батарейкой

Как видите, вам нужно собрать последовательное соединение от контактов лампочки к батарейке и самому диоду.

  1. Первый этап – правильное соединение, когда плюс батарейки подключается к положительной пластине выпрямителя, а минус аккумулятора на отрицательную пластину выпрямителя. Если диод исправен, то в цепи будет протекать ток и лампочка загорится.
  2. Второй этап заключается в переворачивании диода, когда на минусовую пластину подключится положительный вывод выпрямителя, а на плюсовую отрицательный.

Обратная схема проверки лампочкой и батарейкой

При исправном диоде ток протекать не будет, и лампочка не загорится. С практической точки зрения можно не искать батарейку, а обойтись любыми подручными источниками питания, чей номинал сопоставим с номиналом диодного моста и каждого элемента. К примеру, в гараже можно подключиться к автомобильному генератору или клеммам аккумулятора.

Методика проверки мультиметром

Наиболее информативной является полная проверка диодного моста. Для ее реализации вам понадобится мультиметр, тестер или Цешка – любой из этих приборов в равной мере подойдет для измерений.

Выполните такую последовательность действий:

Время затраченное на проверку: 10 минут

Определите назначение выводов.

Метод универсальный, поэтому вы можете проверить как диодный выпрямитель в сборке, так и конструкцию из отдельных деталей, не разбирая их.

Установите щупы мультиметра.

Установите щупы мультиметра в соответствующие разъемы на приборе, соблюдая цветовую маркировку (черный – минус, красный — плюс). Переключатель выведите в режим прозвонки.

Используйте минусовый щуп мультиметра.

Подведите минусовый щуп мультиметра к плюсу диодного моста, а положительный поочередно к каждому из выводов переменного напряжения.

В результате прикосновения на табло мультиметра должно отображаться напряжение открытия диодов, в обеих точках это измеримая величина одинаковая для каждого измерения. В противном случае, сборка неисправна.

Поменяйте щупы тестера местами.

Далее необходимо поменять щупы тестера местами – красный установите на плюс, а черным попеременно касайтесь выводов для переменного напряжения.

На табло будет отображаться единица, свидетельствующая о бесконечно большом сопротивлении – при обратной полярности диоды остаются закрытыми. В противном случае, если отображается какое-то напряжение, мост пробит.

Используйте плюсовой щуп мультиметра.

Коснитесь плюсовым щупом мультиметра отрицательного вывода диодного моста, а минусовым щупом по очереди переменных выводов. В обоих случаях на табло должно отображаться падение напряжения.

Используйте черный щуп.

Установите черный щуп на отрицательный контакт сборки, а красный подводите к переменным выводам. В обеих позициях на мультиметре должна быть единица, в противном случае, элемент пробит.

Видео по теме

Падение напряжения на диодном мосту

Во многих приборах которые работают от сетевого напряжения, присутствует диодный мост.
Почти вся электроника начиная с светодиодной лампочки и заканчивая телевизором и компьютером — все устройства имеют диодный мост в том или ином виде.

Диодный мост, или по другому выпрямитель, необходим для преобразования переменного тока сетевого напряжения в постоянный ток, которым питается вся электроника и преобразователи напряжения различных устройств различной мощности и величины напряжения.
Такие электронные элементы как диодные мосты, очень часто выходят из строя при какой то поломке в схеме, за собой выводя из строя и предохранитель если он есть.

Но как проверить диодный мост чтоб понять следует ли его заменить? Есть несколько способов, давайте рассмотрим некоторые.

Диодные мосты, в схеме, зачастую бывают в двух исполнениях, это может быть диодная сборка в корпусе, а может и состоять из отдельных диодов смонтированных на плате устройства и соединенных между собой медными дорожками.

Диодные мосты, а вернее их сборки могут быть однофазными и трехфазными, а также полупериодными, когда например трансформатор используется с отводом от средней точки.
Но мостом можно назвать именно включение четырех диодов которые соединяются между собой параллельно-последовательным способом.
Переменка от сети подается на два места соединения катода с анодом, ну а постоянный ток снимается с мест соединения одинаковых полюсов (два катода — плюс, а два анода — минус).

Во всех блоках питания, как трансформаторных так и особенно — импульсных стоят диодные мосты, которые преобразуют переменное напряжение в постоянное.
Разница лишь в том что у импульсных блоках питания, диодная сборка стоит на входе и преобразует сразу сетевое напряжение, а у трансформаторных — после трансформатора. В обоих случаях, после диодного моста стоит конденсатор или несколько конденсаторов, что в общей системе после выпрямления поднимает напряжение на несколько вольт в трансформаторном исполнение, и несколько десятков вольт при выпрямление сетевого напряжения 220 вольт, в этом случае на конденсаторе может быть больше 300 вольт.

Как правило если устройство не работает, то смотрят сначала в блок питания и если он не выдает напряжения на своих выходах то смотрят на предохранитель.
Если предохранитель сгорел то не стоит спешить его заменять и сразу же включать устройство, просто так же он не сгорел.
Скорее всего на плате КЗ и здесь следует заметить что речь идет о импульсных блоках питания, потому как с трансформаторными БП такое редко бывает чтоб предохранитель сгорал.
При сгоревшем предохранителе, следует проверить всю первичную цепь радио элементов на пробой, но мы здесь поговорим о том как проверить диодный мост или диоды которые его представляют, потому как это самая вероятная причина поломки но следует заметить что не всегда единственная.

Так же импульсные блоки питания следует проверять и ремонтировать подключая вместо предохранителя лампочку накаливания (где то на 40 — 60 ват). Но у меня, например, есть вот такое, простое устройство выполненное в корпусе маленького пластикового щитка с автоматами разных номиналов которые выполняют роль предохранителей, и УЗО — которое защищает от поражения фазой сетевого напряжения, человека во время ремонта.

В устройстве установлено коммутирующее гнездо для подключения внешней лампочки разных мощностей. При ремонтах различных блоков питания и устройств, на практике нужно разной мощности лампочки накаливания.

Суть лампочки состоит в том что если на плате, где то на входе, есть замыкание то через плату потечет высокий ток и лампочка ярко засветится сохранив при этом не сгоревшие еще элементы.
Но если блок питания исправен то лампочка при включение может слегка вспыхнуть, продемонстрировав заряд конденсатора что стоит после диодного моста, и лампочка должна погаснуть.

Но следует помнить что при нагрузке блока питания на мощность выше мощности лампочки, блок питания будет ограничен мощностью лампочки, а сама лампочка будет ярко светится, поэтому для диагностики необходимо иметь несколько лампочек разного номинала, на 25, 60, 100, 150 ватт

Теперь вернемся к наиболее частой, возможно косвенной причине поломок большинства устройств с импульсными блоками питания — к диодному мосту.
Как же проверить исправен ли он и не подлежит ли замене на новый?

Как проверить диодный мост

Радиоэлементы можно проверять прямо на плате не выпаивая, с диодным мостом можно так же, пусть этот метод будет не точным но быстрым.

Такой экспресс метод проверки дает возможность узнать что диодный мост неисправен если он точно не исправен, но если диоды подгорели или не полностью пробиты то лучше все таки выпаять и проверить элемент отдельно от платы.
Немного проще будет проверить диодный мост который состоит из отдельных диодов на плате.

Для проверки будем использовать мультиметр, причем практически любой дешевый прибор имеет функцию прозвонки диодов с звуковой индикацией пробоя.

В данном режиме тестер показывает значение падения напряжения (в милливольтах).

Прямое подключение — красный щуп(+) подключаем к аноду диода, а черный(-) к катоду (там где полоска на диоде). При таком подключение у исправного диода падение напряжения должно показать 500 — 800 милливольт.

Если у вашего тестера нет режима проверки диодов, то подойдет и режим измерения сопротивления, по аналогичному методу.

Обратное подключение — (меняем щупы местами) теперь красный на катод, а черный на анод.
У исправного диода значение сопротивления должно быть бесконечным, то есть должно показать или «1» или цифры больше 1500 (что бывает редко).

У «пробитого» диода сопротивление будет нулевым или около нуля и скорее всего сработает звуковая индикация пробоя.

Так можно проверить каждый диод диодного моста по отдельности, но что делать если диодный мост представляет из себя радио элемент с четырьмя выводами?

Диодный мост такого типоисполнения можно проверить быстро ( и не выпаивая)
но проверка будет не точной. Суть такова:
Прикладываем щупы к выводам входа (АС) и если прозвонка мультиметра сработала то мост пробит
Прикладываем щупы к выводам +/- (поочередно) и если мультиметр «запищал» и показал нули то мост пробит, а если показал значения около 1000 в одно направление и «1» в другое то мост исправен.

Точный (полный) метод проверки диодного моста который выпаян выглядит так:

1. красный щуп на «-«, а черным касаемся выводов переменки АС (входа), на обоих выводах мультиметр должен показать число примерно 500.

2. черный щуп на «-«, а красным касаемся выводов переменки АС (входа), на обоих выводах должно показать «1» то есть бесконечное сопротивление.

3. черный щуп на «+», а красным касаемся выводов переменки АС — мультиметр покажет число около 500.

4. красный щуп на «+», а черный на выводы переменки (Ас) — мультиметр покажет «1» или запредельное число.

Кроме простого и более сложного метода проверки диодного моста мультиметром, его еще можно точно так же проверить любым тестером, омметром и даже лампочкой (светодиодом) с батарейкой (контролькой).
Кроме того можно проверить его работоспособность подав постоянное напряжение от блока питания на вход диодного моста и измерить напряжение на выходе, затем изменить полярность на входе. У исправного моста напряжение такое же как на входе будет и на выходе при любой вариации полярности на входе.

Проверка диодного моста, в том числе диодного моста генератора автомобиля вещь не сложная и довольно частая для тех кто занимается ремонтом. Минимум инструментов, но главное понимание того как работает диод и его мостовая сборка.

Если все таки возникают сложности с диагностикой диодного моста то всегда можно поставить другой заведомо исправный и посмотреть как работает схема с ним.

Теперь зная элементарные и эффективные методы проверки вы сможете в домашних условиях определить причину поломки бытового прибора или различной электроники, а возможно и самостоятельно отремонтировать свое устройство.

Как проверить диод Шоттки любым мультиметром

Современная электроника давно взяла курс на развитие технологий и уменьшение размера приборов. Для того чтобы сделать прибор меньше, производятся миниатюрные радиодетали, собранные в максимально маленькие, но эффективные электрические схемы.

В сегодняшней статье будет подробно раскрыта тема — диод Шоттки. Пользователь получит информацию о том, как проверить диод Шоттки мультиметром, назначении этих элементов, принципу действия и основных разновидностях.

Назначение

Основное назначение диода Шоттки заключается в создании барьера для падения напряжения, подаваемого в общую цепь. Данный элемент также является полупроводником, как и все диоды. Особенность конструкции является используемый металл в качестве барьера. Основное отличие от обычного диода заключается в величине снижаемого на выходе напряжения. Оно составляет всего 0.2–0.4 вольта, против 0.6–0.8 у обычного полупроводника.

Принцип действия

Принцип работы диода Шоттки почти не отличается от полупроводниковых диодов. Особенностью является наличие металла. В обычном полупроводнике используется 2 вещества, которые формируют внутри себя электроны с положительным и отрицательным зарядом. При прохождении электрического тока, часть заряда теряется на образование этих электронов.

В диоде Шоттки используется металл и полупроводник. В качестве металлического барьера при производстве используют золото, кремний, германий. Диод также состоит из анода и катода. При подаче напряжения на анод, металл создает магнитный барьер для прямого прохождения напряжения. На его поверхности создаются электроны с отрицательным зарядом. При образовании значительного магнитного поля элемент импульсно разряжается. Такой разряд способен повторятся бесконечное количество раз, при условии соблюдения рабочего напряжения и температуры.

Наиболее комфортным напряжением для этого типа диодов является параметр 40–60 вольт. Именно это напряжение позволяет осуществлять переход без потери доли напряжения и без увеличения температуры.

Температура также играет значительную роль для быстрого перехода зарядов. При малом напряжении на входе создается повышение температуры. За счет этого увеличивается количество заряженных электронов, которые быстрее преодолевают металлический барьер.

Разновидности

Диоды Шоттки используются с современной электронике в качестве выпрямителей напряжения. Они способствуют простому, быстрому переходу частиц без существенных потерь на выходе. Основное использование — в диодных схемах импульсных блоков питания. Также они используются для создания импульсного напряжения. Существует 2 основных разновидности этих элементов:

  1. Обычный диод Шоттки в корпусе с анодом и катодом.
  2. Сдвоенные диоды.

Сдвоенные элементы бывают 3 типов:

  1. 2 анода и один катод.
  2. 2 катода и один анод.
  3. Удвоенная сборка с несколькими анодами и катодами.

Такие элементы используются для: выпрямления напряжения солнечных батарей; высоковольтных выпрямителей тока с мощностью до 10 ампер. Сдвоенные элементы используются для максимальной миниатюризации печатной платы приборов. По своей сути это 2 или 3 одинаковых элемента в одном корпусе.

Проверка

Далее будут подробно описаны способы проверки диода Шоттки с помощью цифрового мультиметра. Эти радиодетали можно тестировать описанными ниже способами и аналоговыми измерительными приборами.

Перед тестированием описываемой радиодетали необходимо знать следующие нюансы:

  1. Каждый одиночный диод маркируется белым или серым кольцом. Таким образом указывается катод устройства. Через эту ножку протекает отрицательный заряд или она является запорным входом.
  2. При прозвонке стоит знать, что диоды показывают свою работоспособность только со стороны открытого входа.
  3. Проверяемые элементы и измерительные щупы нельзя держать в руках. Тестер покажет сопротивление человека, что может привести к ошибкам в замерах.
  4. Также стоит знать, какое напряжение поступает от тестера при замерах в режиме прозвонки и сопротивления. Это необходимо, чтобы сопоставлять результат с характеристикой проверяемой детали. Например, тестер выдает 9 вольт для прозвонки, падение напряжения диода составляет 5 вольт. Значит при замере элемент должен выдать данные в пределах 4–4.5 вольт.
  5. Нельзя выполнять проверку подключенного через фазу переменного тока устройства.

Итак, теперь можно приступить к проверке.

Один диод

Тестирование одиночного элемента начинается с включения мультиметра в режим замера сопротивления. Далее необходимо:

  1. Черный измерительный щуп соединить со стороной промаркированной кольцом, то есть с катодом.
  2. Красный измерительный щуп соединяется с анодом.
  3. Тестер должен показать сопротивление перехода. Если в этом положении высвечивается «0» или «1», то элемент можно считать неисправным.
  4. Далее проверяется обратная проводимость. Для этого нужно сменить положение измерительных щупов. При смене полярности сопротивления быть не должно. Если есть хоть незначительные показания, то устройство неисправно.

Точно таким же способом проверяется устройство и в режиме прозвонки. При правильной полярности, тестер должен выдать результат с разницей 300 мВ. При смене полярности результата быть не должно.

Проверка в гнезде «PNP/NPN»

Современные мультиметры оснащаются специальным разъемом для проверки целостности транзисторов. Этот разъем можно использовать для теста диода Шоттки. Для этого необходимо:

  1. Мультиметр перевести в режим «hFE».
  2. Анод вставить в отверстие «P».
  3. Катод в отверстие «N».
  4. Тестер покажет проводимость элемента. Далее потребуется сменить полярность. Просто перевернуть диод и вставить обратно. Отсутствие проводимости укажет на целостность устройства.

Эти проверки точно укажут на коэффициент потери тока на выходе, а также на общую работоспособность детали.

Проверка сдвоенных элементов

Такие детали выполнены в одном корпусе схожим с транзистором. Имеют один анод и 2 катода или наоборот. Перед проверкой необходимо убедиться, какая деталь перед вами. Например, необходимо провести тест элемента с одним анодом в центре и двумя катодами по краям. Далее необходимо:

  1. Тестер переводится на режим прозвонки.
  2. Измерительный щуп красного цвета соединяется с центральной ножкой детали.
  3. Черный измерительный щуп соединяется с «1» катодом.
  4. Тестер должен выдать звуковой сигнал и результат замера с вычетом потери до 300 мВ.
  5. Таким же способом тестируется ножка «2». Результат должен быть аналогичным.
  6. Если при этом положении измерительных щупов элемент прошел проверку, то необходимо сменить полярность и повторить тест.

Такая же проверка покажет целостность элементов у сдвоенной сборки, состоящих из 4 диодов.

Диодный мост

Диоды Шоттки активно используются в качестве составных деталей диодных мостов для разного рода блоков питания, выпрямителей. Диодный мост состоит из 4 деталей, которые соединены последовательно друг с другом. На такой схеме есть 2 контакта для входящего переменного напряжения и 2 контакта для выхода постоянного тока. При помощи цифрового тестера можно легко проверить целостность этого устройства.

Делается это следующим образом:

  1. Перед тестированием блок питания нужно обесточить.
  2. Дать разредиться конденсаторам.
  3. Перевести мультиметр на режим прозвонки.
  4. Измерительный щуп красного цвета соединяется с контактом «1» входа.
  5. Измерительный щуп черного цвета соединяется с контактом «2» входа.
  6. Отсутствие зуммера указывает на работоспособность диодов на входе.

Далее проверяется отдельно каждая пара.

  1. Измерительный щуп красного цвета соединяется с контактом «-».
  2. Черный измерительный щуп с любым контактом входа «

» переменного напряжения.

  • Тестер должен выдать значение в пределах 500 мВ. Эта пара является рабочей.
  • Таким же образом проверяется второй контакт входа. Данные также должны быть в пределах 500 мВ.
  • Далее нужно повторить проверку, но сменить положение щупов. Измерительный щуп черного цвета соединить с «-», а красным проверить контакты входа. Тестер не должен выдать никаких значений или только «1». Это указывает на то, что переход внутри диодов с этой стороны закрыт. Если данные есть, мост не пригоден к включению в сеть.

    Далее проводится проверка выхода постоянного напряжения. Для этого нужно:

    1. Измерительный щуп черного цвета соединить с контактом «+».
    2. Измерительным щупом красного цвета сделать замеры на контактах входа переменного тока.
    3. Результат должен быть в пределах 500 мВ.
    4. При смене полярности и повторной проверке, результата быть не должно или он будет равен «1».

    Данная проверка укажет на целостность устройства. Если в диодном мосту обнаружилась неисправность диодов, то их необходимо заменить на точные аналоги. После того как был выполнен их монтаж, необходимо провести повторную проверку на целостность моста, а только после этого проверять с подключением переменного напряжения.

    Проверка на плате

    Выполнять проверку диода Шоттки на плате можно. Но для этого лучше провести выпаивание катода элемента. Таким образом полностью снимается проблема ошибочного замера с измерением сопротивлений вмонтированных рядом радиодеталей.

    Заключение

    Статья подробно раскрыла основную информацию о диодах Шоттки, методах проверки этого элемента. Начинающим радиолюбителям необходимо серьезно отнестись к разновидностям этой детали. Перед тем как сменить элемент, необходимо проверить по таблице максимальный ток вхождения, номинал утечки и проводимости. Любые несоответствия могут стать причиной выхода из строя всей цепи прибора.

    Видео по теме

    Что такое диодный мост, принцип его работы и схема подключения

    От энергоснабжающей организации до потребителей доставляется переменное напряжение. Это связано с особенностями транспортировки электроэнергии. Но большая часть бытовых (и, частично, производственных) электроприемников требует питания постоянным напряжением. Для его получения требуются преобразователи. Во многих случаях их строят по схеме «понижающий трансформатор – выпрямитель – сглаживающий фильтр» (за исключением импульсных блоков питания). В качестве выпрямителя используются диоды, включенные по мостовой схеме.

    Для чего нужен диодный мост и как он работает

    Диодный мост используется в качестве схемы выпрямления, преобразующей переменное напряжение в постоянное. Принцип его действия основан на односторонней проводимости — свойстве полупроводникового диода пропускать ток только в одном направлении. Простейшим выпрямителем может служить и одиночный диод.

    При подобном включении нижняя (отрицательная) часть синусоиды «срезается». Такой способ имеет недостатки:

    • форма выходного напряжения далека от постоянной, требуется большой и громоздкий конденсатор в качестве сглаживающего фильтра;
    • мощность источника переменного тока используется максимум наполовину.

    Ток через нагрузку повторяет форму выходного напряжения. Поэтому лучше использовать двухполупериодный выпрямитель в виде диодного моста. Если включить четыре диода по указанной схеме и подключить нагрузку, то при подаче на вход переменного напряжения блок будет работать так:

    При положительном напряжении (верхняя часть синусоиды, красная стрелка) ток пойдет через диод VD2, нагрузку, VD3. При отрицательном (нижняя часть синусоиды, зеленая стрелка) через диод VD4, нагрузку, VD1. В итоге за один период ток дважды проходит через нагрузку в одном направлении.

    Форма выходного напряжения гораздо ближе к прямой, хотя уровень пульсаций довольно высок. Мощность источника используется полностью.

    Если имеется источник трехфазного напряжения необходимой амплитуды, можно сделать мост по такой схеме:

    В нём на нагрузке будут складываться три тока, повторяющие форму выходного напряжения, со сдвигом фаз в 120 градусов:

    Выходное напряжение будет огибать верхушки синусоид. Видно, что напряжение пульсирует гораздо меньше, чем в однофазной схеме, его форма более близка к прямой. В этом случае ёмкость сглаживающего фильтра будет минимальной.

    И еще один вариант моста – управляемый. В нём два диода заменены тиристорами – электронными приборами, которые открываются при подаче сигнала на управляющий электрод. В открытом виде тиристоры ведут себя практически как обычные диоды. Схема принимает такой вид:

    Сигналы включения подаются от схемы управления в согласованные моменты времени, отключение происходит в момент перехода напряжения через ноль. Потом напряжение усредняется на конденсаторе, и этим средним уровнем можно управлять.

    Обозначение диодного моста и схема подключения

    Так как мост из диодов может быть построен по различным схемам, а элементов в нём содержится немного, то в большинстве случаев обозначение выпрямительного узла производят, просто рисуя его принципиальную схему. Если это неприемлемо – например, в случае построения блок-схемы – то мост указывается в виде символа, которым указывают любой преобразователь переменного напряжения в постоянное:

    » означает цепи переменного тока, символ «=» – цепи постоянного тока, а «+» и «-» – выходную полярность.

    Если выпрямитель построен по классической мостовой схеме из 4 диодов, то допускается немного упрощенное изображение:

    Подключается вход выпрямительного блока к выходным терминалам источника переменного тока (в большинстве случаев им служит понижающий трансформатор) без соблюдения полярности – любой выходной вывод подключается к любому входному. Выход моста подключается к нагрузке. Она может требовать соблюдения полюсности (включая стабилизатор, сглаживающий фильтр), а может и не требовать.

    Диодный мост может быть подключен к источнику постоянного напряжения. В этом случае получается схема защиты от непреднамеренной переполюсовки – при любом подключении входов моста к выходу блока питания, полярность напряжения на его выходе не изменится.

    Основные технические характеристики

    При выборе диодов или готового моста в первую очередь надо смотреть на наибольший рабочий прямой ток. Он должен с запасом превышать ток нагрузки. Если эта величина неизвестна, а известна мощность, её надо пересчитать в ток по формуле Iнагр=Pнагр/Uвых. Для увеличения допустимого тока полупроводниковые приборы можно соединять параллельно – наибольший ток нагрузки делится на количество диодов. Диоды в одной ветви моста в этом случае лучше подобрать по близкому значению падения напряжения в открытом состоянии.

    Второй важный параметр – прямое напряжение, на которое рассчитан мост или его элементы. Оно не должно быть ниже выходного напряжения источника переменного тока (амплитудного значения!). Для надежной работы устройства надо взять запас в 20-30%. Для увеличения допустимого напряжения диоды можно включать последовательно – в каждое плечо моста.

    Этих двух параметров достаточно для предварительного решения об использовании диодов в выпрямительном устройстве, но надо обратить внимание и на некоторые другие характеристики:

    • максимальная рабочая частота – обычно несколько килогерц и для работы на промышленных частотах 50 или 100 Гц значения не имеет, а если диод будет работать в импульсной схеме, этот параметр может стать определяющим;
    • падение напряжения в открытом состоянии у кремниевых диодов составляет около 0,6 В, что неважно для выходного напряжения, например, в 36 В, но может быть критичным при работе ниже 5 В – в этом случае надо выбирать диоды Шоттки, которые характеризуются низким значением этого параметра.

    Разновидности диодных мостов и их маркировка

    Диодный мост можно собрать на дискретных диодах. Чтобы соблюсти полярность, надо обратить внимание на маркировку. В некоторых случаях метка в виде рисунка нанесена прямо на корпус полупроводникового прибора. Это характерно для изделий отечественного производства.

    Зарубежные (и многие современные российские) приборы маркируются точкой или кольцом. В большинстве случаев так обозначается анод, но гарантии нет. Лучше посмотреть справочник или воспользоваться тестером.

    Можно сделать мост из сборки – четыре диода объединены в одном корпусе, а соединение выводов можно выполнить внешними проводниками (например, на печатной плате). Схемы сборок могут быть разнообразными, поэтому для правильного соединения надо смотреть даташиты.

    Например, у диодной сборки BAV99S, содержащей 4 диода, но имеющей только 6 выводов, внутри имеется два полумоста, соединенных следующим образом (на корпусе около вывода 1 имеется точка):

    Чтобы получить полноценный мост, надо соединить внешними проводниками соответствующие выводы (красным показана трассировка дорожек в случае использования печатного монтажа):

    В этом случае переменное напряжение подводится к выводам 3 и 6. Положительный полюс постоянного снимается с вывода 5 или 2, а отрицательный – 4 или 1.

    И самый простой вариант – это сборка с готовым мостом внутри. Из отечественных изделий это могут быть КЦ402, КЦ405, существуют мосты-сборки зарубежного производства. Маркировка выводов во многих случаях нанесена прямо на корпус, и задача сводится только к корректному выбору по характеристикам и к безошибочному подключению. Если наружного обозначения выводов нет, придется обратиться к справочнику.

    Преимущества и недостатки

    Преимущества диодного моста общеизвестны:

    • отработанные десятилетиями схемы;
    • простота сборки и подключения;
    • несложная диагностика неисправности и простота ремонта.

    В качестве недостатков надо упомянуть рост габаритов и веса схемы при увеличении мощности, а также необходимости использования радиаторов для мощных диодов. Но с этим сделать ничего нельзя – физику не обмануть. Когда эти условия станут неприемлемыми, надо решать вопрос о переходе к импульсной схеме источника питания. Кстати, мостовое включение диодов может быть использовано и в ней.

    Также надо отметить форму выходного напряжения, далекую от постоянной. Для работы с потребителями, предъявляющими требования к стабильности питающего напряжения, надо использовать мост совместно со сглаживающими фильтрами, а при необходимости и стабилизаторами на выходе.

    Диодный мост и двухполупериодный выпрямитель.

    В одной из недавних статей мы разбирались с устройством и принципом работы однополупериодного выпрямителя, так вот, сегодня продолжим эту тему! И перейдем, как и собирались, к более сложной схеме выпрямителя, и в то же время самой популярной. Речь идет, конечно же, о двухполупериодном выпрямителе, сердцем которого является диодный мост.

    Диодный мост – это электронное устройство, которое как раз и предназначено для решения задачи выпрямления тока. Изобретателем этой схемы является немецкий физик Лео Гретц, поэтому также можно встретить название мост Гретца, что весьма логично

    Базовый диодный мост состоит из 4-х диодов, соединенных следующим образом:

    Но зачастую на принципиальных схемах можно встретить упрощенное обозначение:

    Собственно, давайте рассмотрим непосредственно схему двухполупериодного выпрямителя:

    Здесь также возможны некоторые вариации, например:

    Несмотря на разное изображение, электрическое подключение остается неизменным, и все-таки первый вариант используется значительно чаще, так что и мы будем придерживаться именно его.

    Резистор R_н в данном примере играет роль полезной нагрузки. Как и при разборе однополупериодного выпрямителя рассмотрим случай с синусоидальным напряжением на входе:

    В случае положительного полупериода сигнала ( U_ <вх>gt 0 ), ток будет протекать через диоды D1 и D3 . Давайте рассмотрим путь тока более наглядно:

    А на отрицательном полупериоде, напротив, диоды D1 и D3 будут закрыты, а протекание тока обеспечат D2 и D4 :

    В обоих случаях ток через нагрузку будет течь в одном и том же направлении, от точки, помеченной знаком “+” на схеме, к точке “-“. А именно для этого мы и используем выпрямитель – чтобы ток через нагрузку протекал только в одном направлении! И в результате выходной сигнал имеет такой вид:

    Сразу же очевидно отличие от однополупериодной схемы, когда сигнал на выходе был только на протяжении одного полупериода. В данном же случае, ток через нагрузку течет как на положительном, так и на отрицательном полупериоде! Поэтому схема и называется двухполупериодной.

    Но! Также как и в случае с однополупериодным выпрямителем на выходе мы получаем пульсирующий ток, а не строго постоянный. Поэтому необходимо использовать сглаживающий фильтр, который в самом простом варианте может состоять из одного конденсатора:

    Емкость должна быть такой, чтобы конденсатор не успевал быстро разрядиться. Итак, добавляем конденсатор в схему выпрямителя на диодном мосте и проверяем напряжение на нагрузке:

    Совсем другое дело!

    Существуют специальные диодные сборки, которые представляют из себя четыре одинаковых по характеристикам диода, соединенные по мостовой схеме, помещенные в один корпус. Соответственно, такая сборка имеет четыре вывода, все в точности как на нашей схеме. Выводы, предназначенные для подключения переменного тока (входного сигнала) могут обозначаться символом “

    ” или буквами AC, традиционными для переменного тока. Выводы же, к которым подключается нагрузка, обозначаются “+” и “-“. Но все это, конечно, индивидуально и зависит от использующегося устройства.

    Несколько примеров диодных мостов в сборке:

    И по традиции, в завершение статьи, резюмируем плюсы и минусы двухполупериодного выпрямителя по сравнению с однополупериодным:

    • В первую очередь, поскольку здесь используются уже оба полупериода сигнала, то, естественно, КПД схемы больше.
    • Кроме того, пульсирующее напряжение на выходе имеет в 2 раза большую частоту, а такие пульсации сгладить проще.

    Но, как и всегда, есть и свои недостатки:

    • Во-первых, это двойное падение напряжения. Поскольку при прохождении тока через диод на самом диоде падает напряжение, то в данном случае оно удвоено, поскольку ток в итоге проходит через два диода. Именно поэтому в схеме двухполупериодного выпрямителя часто отдают предпочтение диодам Шоттки, имеющим пониженное падение напряжения.
    • И второй недостаток, имеющий скорее практический смысл. Если один из диодов диодного моста выйдет из строя, то схема просто превратится в однополупериодный выпрямитель, но работать не перестанет! То есть получается, что возникшую проблему заметить сразу будет довольно проблематично.

    И вот на этом точно заканчиваем на сегодня 🙂 Всем спасибо за внимание, любые вопросы можно задавать на нашем форуме, в группе ВКонтакте или в комментариях к статье!

    Для любых предложений по сайту: [email protected]