- Самодельный регулятор напряжения 12в
- ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ
- Схема номер 1
- Схема номер 2
- Что получилось
- Регулятор напряжения своими руками: мастер-класс как сделать простейшее устройство по регулировке напряжения
- Регулятор сетевого напряжения
- Стабилизатор на 12 В
- Тонкости регулировки
- Регулятор оборотов двигателя постоянного тока 12 вольт
- Функции и основные характеристики
- Одноканальный регулятор для мотора
- Конструкция устройства
- Принцип работы
- Материалы и детали
- Процесс сборки
- Двухканальный регулятор для мотора
- Конструкция устройства
- Принцип работы
- Материалы и детали
- Процесс сборки
- Электронный регулятор напряжения бортовой сети авто
- Схемы, как сделать зарядное устройство для автомобильного аккумулятора своими руками
- Параметры устройства
- Схема зарядного устройства для автомобильного аккумулятора
- Простые схемы
- С 1 диодом
- С диодным мостом
- С диодным мостом и конденсатором
- Схемы с регулировкой
- Порядок сборки зарядного устройства для автомобильного аккумулятора
- Автозарядка из блока питания
Самодельный регулятор напряжения 12в
ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ
Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.
Схема номер 1
Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.
КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.
Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»
Схема номер 2
В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.
У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.
Что получилось
Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.
Регулятор напряжения своими руками: мастер-класс как сделать простейшее устройство по регулировке напряжения
В бытовых нуждах иногда есть потребность в регуляторе напряжения. В интернете можно встретить много разновидностей подобных устройств, которые различаются набором элементной базы. Любому, даже начинающему радиолюбителю не составит труда сделать такой прибор. По фото самодельных регуляторов напряжения можно определить его габариты, и сделать вывод о его начинке.
Краткое содержимое статьи:
Регулятор сетевого напряжения
Рассмотрим, как сделать регулятор напряжения 220в своими руками. Имеется простая схема, для которой не нужны дорогостоящие радиодетали. Понадобится следующий набор элементов:
- 2 резистора по 1кОм;
- Переменное сопротивление 1мОм;
- Пара конденсаторов 47 нФ, и 0,01мкФ;
- Динистор. Его монтаж осуществляется любой стороной (у него нет полярности);
- Симистор и радиатор к нему;
- Клемники винтовые.
Если есть желание получить плавную регулировку напряжения, то лучше сделать монтаж на переменном сопротивлении 500кОм, но диапазон регулировки не будет опускаться ниже 120В.
Переменный резистор на 1мОм будет регулировать жестче, но диапазон будет до 60В. Изготовив печатную плату, монтируем на нее винтовые клемники. Затем припаиваем все элементы, а последними должны устанавливаться симистор с радиатором.
На этом монтаж заканчивается, необходимо только промыть полученную плату спиртовым раствором, и можно проверять.
Стабилизатор на 12 В
Для автолюбителей можно сделать регулятор напряжения 12 вольт своими руками. Это устройство актуально для светодиодов работающих в автомобилях. Их нельзя питать напрямую от сети, потому что возникающие перепады напряжения выведут их из строя. Для этого применяют драйверы.
Схема простого регулятора напряжения своими руками изготавливается достаточно быстро. Первым делом нужно сделать плату, на которую будет собираться печатный монтаж.
Необходимо приобрести микросхему LW 317, и совместить его с сопротивлением. Понадобится LED лента, которую нужно соединить со вторым разъемом. От него следует вывести проводник на «минус» БП. Третью ножку микросхемы коммутируют с плюсом блок питания.
Тонкости регулировки
Потребность в регуляторе напряжения будет в следующих условиях:
- Необходима регулировка переменного, и постоянного напряжения.
- Возможность регулировать напряжение в нагрузке.
Каждый перечисленный пункт определяет свой набор радиодеталей в схеме. Но устройство самого простого регулятора основано на переменном резисторе. При регулировке переменного напряжения не создается искажений. С помощью переменного сопротивления возможна регулировка и постоянного тока.
При разности потенциалов на входе и выходе возникнет потеря энергии. Переменное сопротивление начнет выделять тепло. Во избежание тепловых потерь на переменке используют индуктивность переменного типа.
Чтобы напряжение и нагрузка тока была заданного параметра, используют стабилизаторы. Напряжение на выходе сверяют с правильным значением, и при возникновении небольших заданных изменений происходит автоматическое восстановление регулятора.
Можно отыскать множество пошаговых инструкций, как сделать регулятор напряжения. Но самым простым, и понятным вариантом считается устройство на интегральных микросхемах. Удобство изделий позволяет питать светодиоды и другие системы освещения в автомобиле. Для сетевого регулятора нужен преобразователь понижающего типа, а к входу следует подключать выпрямитель.
Очень часто нагрузка может иметь разные параметры, поэтому для подобных случаев без специальных стабилизаторов напряжения не обойтись. Их работа может осуществляться в нескольких режимах.
Для всех устройств электронного типа важно получать стабильное напряжение. Они имеют нелинейные компоненты, встроенные в электрическую цепь.
Чтобы получить правильную настройку цепи, нужно чтобы разность потенциалов получила определенную величину. Любые ее изменения повлекут к нарушениям эксплуатационных значений.
Имеется регулятор напряжения основанный на тиристоре. Это очень мощный полупроводник, который применяется в преобразовательных приборах больших мощностей. Благодаря специфичному управлению, его используют для коммутации «переменки».
Регулятор оборотов двигателя постоянного тока 12 вольт
На простых механизмах удобно устанавливать аналоговые регуляторы тока. К примеру, они могут изменить скорость вращения вала мотора. С технической стороны выполнить такой регулятор просто (потребуется установка одного транзистора). Применим для регулировки независимой скорости моторов в робототехнике и источниках питания. Наиболее распространены два варианта регуляторов: одноканальные и двухканальные.
Видео №1 . Одноканальный регулятор в работе. Меняет скорость кручения вала мотора посредством вращения ручки переменного резистора.
Видео №2. Увеличение скорости кручения вала мотора при работе одноканального регулятора. Рост числа оборотов от минимального до максимального значения при вращении ручки переменного резистора.
Видео №3 . Двухканальный регулятор в работе. Независимая установка скорости кручения валов моторов на базе подстроечных резисторов.
Видео №4. Напряжение на выходе регулятора измерено цифровым мультиметром. Полученное значение равно напряжению батарейки, от которого отняли 0,6 вольт (разница возникает из-за падения напряжения на переходе транзистора). При использовании батарейки в 9,55 вольт, фиксируется изменение от 0 до 8,9 вольт.
Функции и основные характеристики
Ток нагрузки одноканального (фото. 1) и двухканального (фото. 2) регуляторов не превышает 1,5 А. Поэтому для повышения нагрузочной способности производят замену транзистора КТ815А на КТ972А. Нумерация выводов для этих транзисторов совпадает (э-к-б). Но модель КТ972А работоспособна с токами до 4А.
Одноканальный регулятор для мотора
Устройство управляет одним мотором, питание осуществляется от напряжения в диапазоне от 2 до 12 вольт.
Конструкция устройства
Основные элементы конструкции регулятора представлены на фото. 3. Устройство состоит из пяти компонентов: два резистор переменного сопротивления с сопротивлением 10 кОм (№1) и 1 кОм (№2), транзистор модели КТ815А (№3), пара двухсекционных винтовых клеммника на выход для подключения мотора (№4) и вход для подключения батарейки (№5).
Примечание 1. Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.
Принцип работы
Порядок работы регулятора мотора описывает электросхема (рис. 1). С учетом полярности на разъем ХТ1 подают постоянное напряжение. Лампочку или мотор подключают к разъему ХТ2. На входе включают переменный резистор R1, вращение его ручки изменяет потенциал на среднем выходе в противовес минусу батарейки. Через токоограничитель R2 произведено подключение среднего выхода к базовому выводу транзистора VT1. При этом транзистор включен по схеме регулярного тока. Положительный потенциал на базовом выходе увеличивается при перемещении вверх среднего вывода от плавного вращения ручки переменного резистора. Происходит увеличение тока, которое обусловлено снижением сопротивления перехода коллектор-эмитттер в транзисторе VT1. Потенциал будет уменьшаться, если ситуация будет обратной.
Принципиальная электрическая схема
Материалы и детали
Необходима печатная плата размером 20х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита (допустимая толщина 1-1,5 мм). В таблице 1 приведен список радиокомпонентов.
Примечание 2. Необходимый для устройства переменный резистор может быть любого производства, важно соблюсти для него значения сопротивления тока указанные в таблице 1.
Примечание 3. Для регулировки токов выше 1,5А транзистор КТ815Г заменяют на более мощный КТ972А (с максимальным током 4А). При этом рисунок печатной платы менять не требуется, так как распределение выводов у обоих транзисторов идентично.
Процесс сборки
Для дальнейшей работы нужно скачать архивный файл, размещенный в конце статьи, разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора (файл termo1), а монтажный чертеж (файл montag1) – на белом листе офисной (формат А4).
Далее чертеж монтажной платы (№1 на фото. 4) наклеивают к токоведущим дорожкам на противоположной стороне печатной платы (№2 на фото. 4). Необходимо сделать отверстия (№3 на фото. 14) на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпадать. На фото.5 показана цоколёвка транзистора КТ815.
Вход и выход клеммников-разъемов маркируют белым цветом . Через клипсу к клеммнику подключается источник напряжения. Полностью собранный одноканальный регулятор отображен на фото. Источник питания (батарея 9 вольт) подключается на финальном этапе сборки. Теперь можно регулировать скорость вращения вала с помощью мотора, для этого нужно плавно вращать ручку регулировки переменного резистора.
Для тестирования устройства необходимо из архива распечатать чертеж диска. Далее нужно наклеить этот чертеж (№1) на плотную и тонкую картонную бумагу (№2 ). Затем с помощью ножниц вырезается диск (№3).
Полученную заготовку переворачивают (№1 ) и к центру крепят квадрат черной изоленты (№2) для лучшего сцепления поверхности вала мотора с диском. Нужно сделать отверстие (№3) как указано на изображении. Затем диск устанавливают на вал мотора и можно приступать к испытаниям. Одноканальный регулятор мотора готов!
Двухканальный регулятор для мотора
Используется для независимого управления парой моторов одновременно. Питание осуществляется от напряжения в диапазоне от 2 до 12 вольт. Ток нагрузки рассчитан до 1,5А на каждый канал.
Конструкция устройства
Основные компоненты конструкции представлены на фото.10 и включают: два подстроечных резистора для регулировки 2-го канала (№1) и 1-го канала (№2), три двухсекционных винтовых клеммника для выхода на 2-ой мотор (№3), для выхода на 1-ый мотор (№4) и для входа (№5).
Примечание.1 Установка винтовых клеммников не обязательна. С помощью тонкого монтажного многожильного провода можно подключить мотор и источник питания напрямую.
Принцип работы
Схема двухканального регулятора идентична электрической схеме одноканального регулятора. Состоит из двух частей (рис.2). Основное отличие: резистор переменного сопротивления замен на подстроечный резистор. Скорость вращения валов устанавливается заранее.
Примечание.2. Для оперативной регулировки скорости кручения моторов подстроечные резисторы заменяют с помощью монтажного провода с резисторами переменного сопротивления с показателями сопротивлений, указанными на схеме.
Материалы и детали
Понадобится печатная плата размером 30х30 мм, изготовленная из фольгированного с одной стороны листа стеклотекстолита толщиной 1-1,5 мм. В таблице 2 приведен список радиокомпонентов.
Процесс сборки
После скачивания архивного файла, размещенного в конце статьи, нужно разархивировать его и распечатать. На глянцевой бумаге печатают чертеж регулятора для термоперевода (файл termo2), а монтажный чертеж (файл montag2) – на белом листе офисной (формат А4).
Чертеж монтажной платы наклеивают к токоведущим дорожкам на противоположной стороне печатной платы . Формируют отверстия на монтажом чертеже в посадочных местах. Монтажный чертеж крепится к печатной плате сухим клеем, при этом отверстия должны совпасть. Производится цоколёвка транзистора КТ815. Для проверки нужно временно соединить монтажным проводом входы 1 и 2 .
Любой из входов подключают к полюсу источника питания (в примере показана батарейка 9 вольт). Минус источника питания при этом крепят к центру клеммника. Важно помнить: черный провод «-», а красный «+».
Моторы должны быть подключены к двум клеммникам, также необходимо установить нужную скорость. После успешных испытаний нужно удалить временное соединение входов и установить устройство на модель робота. Двухканальный регулятор мотора готов!
В АРХИВЕ представленные необходимые схемы и чертежи для работы. Эмиттеры транзисторов помечены красными стрелками.
Электронный регулятор напряжения бортовой сети авто
Электромеханический, в котором с помощью вибрирующих контактов изменяется ток в обмотке возбуждения генератора переменного тока. Работа вибрирующий контактов обеспечивается таким образом, чтобы с ростом напряжения бортовой сети уменьшался ток в обмотке возбуждения. Однако вибрационные регуляторы напряжения поддерживают напряжение с точностью 5-10%, из-за этого существенно снижается долговечность аккумулятора и освети тельных ламп автомобиля.
Электронные регуляторы напряжения бортовой сети типа Я112 , которые в народе называют “шоколадка”. Недостатки этого регулятора известны всем – низкая надежность, обусловленная низким коммутационным током 5А и местом установки прямо на генераторе, что ведет к перегреву регулятора и выходу его из строя. Точность поддержания напряжения остается, несмотря на электронную схему, очень низкой и составляет 5% от номинального напряжения.
Вот поэтому я решил сделать устройство, которое свободно от вышеизложенных недостатков. Регулятор прост в настройке, точность поддержания напряжения составляет 1% от номинального напряжения. Схема, приведенная на рис.1 прошла испытания на многих автомобилях, в том числе и грузовых в течение 2-х лет и показала очень хорошие результаты.
Рис.1.
Принцип работы
При включении замка зажигания напряжение +12В подается на схему электронного регулятора. Если напряжение, поступающее на стабилитрон VD1 с делителя напряжения R1R2 недостаточно для его пробоя, то транзисторы VT1, VT2 находятся в закрытом состоянии, а VT3 – в открытом. Через обмотку возбуждения протекает максимальный ток, выходное напряжение генератора начинает расти и при достижении 13,5 – 14,2В возникает пробой стабилитрона.
Благодаря этому открываются транзисторы VT1, VT2, соответственно транзистор VT3 закрывается, ток обмотки возбуждения уменьшается и снижается выходное напряжение генератора. Снижения выходного напряжения примерно на 0,05 – 0,12В достаточно, чтобы стабилитрон перешел в запертое состояние, после чего транзисторы VT1, VT2 закрываются, а транзистор VT3 открывается и через обмотку возбуждения снова начинает протекать ток. Этот процесс непрерывно повторяется с частотой 200 – 300 Гц, которая определяется инерционностью магнитного потока.
Конструкция
При изготовлении электронного регулятора, следует обратить особое внимание на отвод тепла от транзистора VT3. На этом транзисторе, работающем в ключевом режиме, 1ем не менее выделяется значительная мощность, поэтому его следует монтировать на радиаторе. Остальные детали можно разместить на печатной плате, прикрепленной к радиатору.
Таким образом, получается очень компактная конструкция. Резистор R6 должен быть мощностью не менее 2Вт. Диод VD2 должен иметь прямой ток около 2А и обратное напряжение не менее 400В, лучше всего подходит КД202Ж, но возможны и другие варианты. Транзисторы желательно применить те, которые указаны на принципиальной схеме, особенно VT3. Транзистор VT2 можно заменить на КТ814 с любыми буквенными индексами. Стабилитрон VD1 желательно установить серии КС с напряжением стабилизации 5,6-9В, (типа КС156А, КС358А, КС172А), при этом увеличится точность поддержания напряжения.
Настройка
Правильно собранный регулятор напряжения не нуждается в особой настройке и обеспечивает стабильность напряжения бортовой сети примерно 0,1 – 0,12В, при изменении числа оборотов двигателя от 800 до 5500 об/мин. Проще всего настройку производить на стенде, состоящем из регулируемого блока питания 0 – 17В и лампочки накаливания 12В 5-10Вт. Плюсовой выход блока питания подключают к клемме “+” регулятора, минусовой выход блока питания подключают к клемме “Общ”, а лампочку накаливания подключают к клемме “Ш” и клемме “Общ” регулятора.
Настройка сводится к подбору резистора R2, который изменяют в пределах 1-5 кОм, и добиваются порога срабатывания на уровне 14,2В. Это и есть поддерживаемое напряжение бортовой сети. Увеличивать его выше 14,5В нельзя, поскольку при этом резко сократится ресурс аккумуляторов.
Схемы, как сделать зарядное устройство для автомобильного аккумулятора своими руками
Наверное, каждый автомобилист знает, как быстро ломаются зарядки для аккумулятора автомобиля. Если в очередной раз это произошло, пришло время самостоятельно его собрать. Это несложно, даже если нет электротехнических знаний.
Параметры устройства
Всем известно, что вся электроника автомобиля питается от 12в. При этом устройство для зарядки должно выдавать ток в 10% от номинальной емкости. Без этого ЗУ тоже будет работать, но намного медленнее.
Чтобы добиться этих параметров, понадобится:
- Трансформатор с 2 обмотками. Здесь работает правило «чем больше витков – тем лучше». Если обмоток больше, то не страшно. Просто они не будут задействованы. По сути подойдет любой импульсный трансформатор.
- Из розетки идет переменное питание. Зарядное устройство для автомобильного аккумулятора, сделанное своими руками, должно выдавать постоянное. На этот случай понадобится выпрямитель.
- Тестер. Мультиметр необходим для того, чтобы определить выходное напряжение. Оно должно быть ровно 12 вольт.
- Сделать зарядное устройство для аккумулятора невозможно без управления автоматикой. В противном случае аккумулятор может взорваться. Поэтому необходимо реле контроля напряжения.
- Понадобится регулировка тока. С этим справится переменный резистор. Желательно взять многооборотистый регулятор тока, чтобы подстройка была плавной.
Этого достаточно, чтобы собрать простое зарядное устройство.
Схема зарядного устройства для автомобильного аккумулятора
Чтобы собрать самодельное зарядное устройство нужны хотя бы навыки пайки, не более. Вот несколько схема зарядного устройства для автомобильного аккумулятора, которые можно собрать за пару часов.
Простые схемы
Вот 3 схемы простого зарядного устройства для автомобильного аккумулятора. Возможно, все необходимые комплектующие уже у вас есть или их можно купить за бесценок на барахолке.
С 1 диодом
Перед трансформатором ставится предохранитель на 1 ампер и выключатель для удобства. После трансформатора с одного вывода обмотки ставится диод, а с другого — предохранитель. В разрыв нужно поставить амперметр и вольтметр. Можно купить дешевые китайские тестеры, где только экран и провода. Можно задействовать советские стрелочные.
Схема автоматического зарядного не самая лучшая. Диод срезает нижнюю часть синуса, от чего пульсация получается неравномерной.
С диодным мостом
Для АКБ автомобиля этот вариант подходит лучше. ДМ – это уже полноценный выравниватель напряжения.
Зарядник для автомобильного аккумулятора собирается также, но вместо диода устанавливается мост. От его минуса провод идет на предохранитель после трансформатора.
Диодный мост можно купить или спаять самостоятельно. Для этого понадобится всего 4 диода. Схема выглядит так. Напряжение все еще пульсирующее, что не очень хорошо для аккумуляторов.
С диодным мостом и конденсатором
Вот как выглядит правильное трансформаторное зарядное устройство. Между плюсом и минусом ставится конденсатор на 25-50 вольт и 5000-6000 микрофарад.
Конденсатор принимает напряжение и отдает его, но уже выровненным и без пульсаций.
Схемы с регулировкой
Если хочется, чтобы зарядник для аккумулятора автомобиля, сделанный своими руками правильно работал, необходим регулятор. С этим справится обычный подстроечный (переменный) резистор на 4,7 килоома.
Также в схеме предусмотрено 3 транзистора. Их расположение и номер подписан, поэтому проблем не будет. Достаточно прийти в радиомагазин и показать наименования. Они необходимы, чтобы резистор работал корректно.
Транзисторам необходимо хотя бы пассивное охлаждение, поэтому к их радиаторам лучше прикрепить алюминиевую пластину или поставить кулер.
Замечание. На схеме в разрыв транзистора П210 и вторым предохранителем установлен амперметр. С регулировкой тока и напряжения в нем нет необходимости, так как подстроить нужно только вольтаж. Поэтому на его место лучше поставить вольтметр.
Подробное видео можно посмотреть ниже.
Порядок сборки зарядного устройства для автомобильного аккумулятора
По рассмотреть, как сделать зарядное устройство для авто. Для новичка вполне подойдет эта схема. Она была рассмотрена ранее. Как ее усовершенствовать – написано выше.
Для начала понадобится раздобыть трансформатор. В радиоаппаратуре и старых магнитофонах можно найти неплохой ТС-180-2. Он состоит из 4 обмоток. Нужно соединить на первичке выводы 1 и 1, а на вторичке 9 номера. То есть, если соединить 4 обмотки в 2 последовательно, получится двухобмоточный трансформатор с напряжением в 13,6 вольт, что и требуется для нормальной работы ЗУ. К выводам № 2 нужно припаять сетевой шнур.
Как подключить зарядное устройство к аккумулятору автомобиля? Просто нужно диодный мост соединить проводами с 10 выводами. В разрыв стоит поставить амперметр с ограничением 15 ампер.
В цепь амперметра подпаивается регулятор напряжения. Между выводами с трансформатора нужно поставить вольтметр.
Чтобы защитить автоматическое зарядного устройства для автомобильных аккумуляторов, нужно поставить предохранители. Один со стороны АКБ (10 А), второй на входе в трансформатор (0,5А).
Не стоит сразу ставить высокий ток. Для перестраховки на зарядном устройстве нужно ставить невысокий ток (от 1А), а затем постепенно повышать до 9-10А. Когда АКБ будет заряжен, амперметр будет показывать около 1 ампера. Это значит, что зарядное устройство можно отключать.
Автозарядка из блока питания
Самодельное подзарядное устройство можно сделать и из БП от компьютера. Придется его немного доработать, зато получается хорошее, почти заводское ЗУ. Возможно, блок питания можно найти в закромах.
В большинстве своем, БП построены на базе ШИМ модуля TL494. Он идеально подходит для автомобильных зарядок.
Далее нужно просто действовать по инструкции:
- Все провода, кроме желтых и черных, нужно обрезать.
- Спаиваем их между собой: желтые с желтыми, черные с черными.
- На контроллере нужно перерезать дорожки, которые идут к пинам: 1, 14, 15, 16.
- В корпусе необходимо сделать 2 отверстия под подстроечные резисторы (10 и 4,4 килоом).
- Остается только собрать эту схему. Разводить плату не нужно, все делается навесным монтажом.
В автоматическом зарядном устройстве, сделанном своими руками, не помешает мультиметр, который нужно врезать в корпус БП.