Светодиоды с низким напряжением питания

Светодиоды и их применение
Содержание
  1. Светодиоды с низким напряжением питания
  2. Светодиоды и их применение
  3. Осветительные приборы на основе светодиодов переменного тока находят свою нишу и, возможно, выйдут за ее пределы
  4. Светодиоды: виды и схема подключения
  5. Содержание статьи
  6. Устройство светодиода
  7. Как работает светодиод?
  8. Виды и основные параметры светодиодов
  9. Применение светодиодов
  10. Основные правила подключения светодиодов
  11. Основные характеристики светодиодов
  12. Способы подключения
  13. Как подключить светодиоды к сети переменного тока 220 В через блок питания
  14. Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение
  15. Светодиоды с низким напряжением питания
  16. Как узнать напряжение питания светодиода
  17. Как определить напряжение питания светодиодов
  18. Как узнать падение напряжения на светодиоде
  19. Теоретический метод
  20. Практический метод
  21. Итоги: что делать, если напряжение светодиода упало

Светодиоды с низким напряжением питания

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.

Достоинства:

1. Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
2. Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
3. Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
4. Миниатюрность
5. Долгий срок службы (долговечность)
6. Высокий КПД,
7. Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
8. Большое количество различных цветов свечения, направленность излучения
9. Регулируемая интенсивность

Недостатки:

1. Относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
2. Малый световой поток от одного элемента
3. Деградация параметров светодиодов со временем
4. Повышенные требования к питающему источнику

Внешний вид и основные параметры:

У светодиодов есть несколько основных параметров:

1. Тип корпуса
2. Типовой (рабочий) ток
3. Падение (рабочее) напряжения
4. Цвет свечения (длина волны, нм)
5. Угол рассеивания

В основном, под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод — полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение. Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.

В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.

Схема включения и расчет необходимых параметров:

Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод («минус»), а другой — анод («плюс»).

Светодиод будет «гореть» только при прямом включении, как показано на рисунке

При обратном включении светодиод «гореть» не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Нетрудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется «рабочей» зоной, так как именно здесь обеспечивается работа светодиода.

1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Чтобы правильно подключить светодиод в самом простом случае, необходимо подключить его через токоограничивающий резистор.

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

То есть, надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчет: 3 светодиода на 3 вольта = 9 вольт , то есть 15 вольтового источника достаточно для последовательного включения светодиодов

Расчет аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Если имеются светодиоды разных марок то комбинируем их таким образом, чтобы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление

Например имеются 5 разных светодиодов:
1-ый красный напряжение 3 вольта 20 мА
2-ой зеленый напряжение 2.5 вольта 20 мА
3-ий синий напряжение 3 вольта 50 мА
4-ый белый напряжение 2.7 вольта 50 мА
5-ый желтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1-ый и 2-ой
2) 3-ий и 4-ый
3) 5-ый

рассчитываем для каждой ветви резисторы:
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

Полноцветный светодиод или по другому RGB-светодиод — Red, Green, Blue. Смешивая эти три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность (Red: 100%, Green: 100%, Blue: 100%), то получится свечение белого цвета. Если зажечь только два (Red: 100%, Green: 100%, Blue: 0%), то будет светиться желтый цвет.

Конструктивно, RGB-светодиод состоит из трех кристаллов под одним корпусом и имеет 4 вывода: один общий и три цветовых вывода.
RGB-светодиоды бывают:
1. С общим анодом (CA)
2. С общим катодом (CC)
3. Без общего анода или катода (6 выводов). Как правило в SMD-исполнении.

Самый длинный вывод RGB-светодиода, обычно является общим (анодом или катодом).

При подключении данных светодиодов, следует учесть, что напряжение, подаваемое для свечения цвета может быть разным для разных цветов.
К примеру, возьмем 5мм светодиод MCDL-5013RGB (I=20мА):
Ured = 2.0 Вольт
Ugreen = 3.5 Вольт
Ublue = 3.5 Вольт

Также следует отметить то, что для некоторых типов RGB-светодиодов необходимо использовать рассеиватель, иначе будут видны составляющие цвета.

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем, что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит при немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Осветительные приборы на основе светодиодов переменного тока находят свою нишу и, возможно, выйдут за ее пределы

Сборки на основе светодиодов переменного тока часто имеют светоотдачу и эффективность, не уступающие приборам, в которых используются светодиоды постоянного тока, и, при этом, не нуждаются в AC/DC преобразователе. Но могут ли они найти свое место за рамками тех приложений, в которых применяются сейчас?

Сама по себе концепция светодиодов переменного тока (AC-LED) изящна. Им не нужны AC/DC преобразователи и некоторые другие электронные компоненты, требуемые для питания светодиодов постоянного тока (DC-LED), а вся электронная начинка между источником переменного тока и светодиодом максимально упрощена. Действительно, при создании приложений с AC-LED, где светодиод способен работать непосредственно от линии переменного тока или от понижающего трансформатора, может потребоваться лишь корпус со светодиодами и балластный резистор для некоторых приложений. С другой стороны, при использовании AC-LED может потребоваться оптимизация управления питанием (коррекция коэффициента мощности и суммарного коэффициента гармонических искажений). До настоящего времени область применения AC-LED была ограничена нишей карнизной подсветки, садового и декоративного освещения. Но производители AC-LED сборок утверждают, что однажды весь рынок ретрофитных светодиодных ламп перейдет на AC-LED.

В данной статье рассматривается коммерческая доступность AC-LED, сборок на их основе и питающих устройств, и обсуждаются проблемы, решение которых приведет к более легкой интеграции AC-LED в электрические сети, чем это происходит с DC-LED. Также здесь затрагивается возможность выхода AC-LED на рынок ретрофитных ламп, включая лампы MR16, A-лампы и потолочные светильники.

Что означает AC-LED?

Важно отметить, что аббревиатура AC-LED на самом деле неправильна: под LED подразумевают диоды, то есть приборы, пропускающие ток в одном направлении (постоянный ток). Однако при использовании так называемой «AC-LED схемы» светодиоды (LED) могут быть подключены напрямую к сети питания (обычно 110 В/60 Гц или 230 В/50 Гц) и светить без обычно применяемого драйвера. В каждом полупериоде синусоидального переменного напряжения половина светодиодов излучает свет, а другая – нет. В следующем полупериоде светодиоды меняются ролями. В такой конфигурации, иногда называемой встречно-параллельной, или «истинным AC», большое количество последовательно соединенных светодиодов может работать непосредственно от электрической сети.

Однако при таком подходе последовательное включение множества светодиодов в одну цепочку становится фактором, ограничивающим их эффективность. Поэтому несколько лет назад производители AC-LED, включая Lynk Labs of Elgin, IL, Seoul Semiconductor (Сеул, Южная Корея) и Epistar (Синьчжу, Тайвань), начали выпускать светодиоды, точнее, их сборки, работающие от низкого или высокого переменного напряжения с использованием простых схем управления. К ним относятся как низковольтные светодиодные сборки, так и сборки с выпрямителями, подключаемые непосредственно к сети переменного тока. Типичное напряжение питания таких приборов может быть от 12 В до 240 В. Отдельные светодиоды соединяются в цепочку, пиковое напряжение на которой достигает, например, 55 В в каждой полуволне сетевого напряжения 110 В. «Это действительно использование переменного тока на основе высоковольтной архитектуры» – сказал Брайен Уилкокс (Brian Wilcox), вице-президент североамериканского отделения компании Seoul Semiconductor, производителя светодиодов постоянного и переменного тока и сборок на их основе.

Для сравнения, DC-LED нуждаются в драйвере для преобразования переменного сетевого напряжения в низкое постоянное напряжение, питающее светодиод. В состав драйвера входит AC/DC преобразователь, как правило, электролитический конденсатор большой емкости, а также другие компоненты, количество которых может достигать 20, как, например, в 7-ваттной лампе MR16. Для приложений большой мощности требуется еще больше компонентов. Однако Уилкокс заявил, что, несмотря на простоту электронной схемы, разработка устройств с AC-LED связано с необходимостью решения таких проблем, как снижение полного коэффициента гармоник, повышение коэффициента мощности и обеспечение зональной регулировки яркости. «Любая из трех задач нетривиальна, в особенности, когда пытаешься решить все три сразу», – заключил Уилкокс.

В самом деле, можно утверждать, что все эти проблемы, а также низкая, в сравнении DC-LED, эффективность до настоящего времени ограничивали распространение AC-LED. Однако в последних AC-LED и высоковольтных изделиях на их основе перечисленные выше недостатки в значительной степени были устранены. Также в новых приборах должна быть решена и проблема мерцания. «Многие люди жалуются на мерцание AC-LED. Но этот эффект является следствием пространственной удаленности светодиодов. Он возникает, когда светодиоды находятся на большом расстоянии друг от друга, и глаз замечает составляющую выпрямленной частоты 50-60 Гц», – говорит Майк Мискин (Mike Miskin), генеральный директор компании Lynk Labs, производителя AC-LED, сборок на их основе и драйверов. В некоторых последних изделиях этой компании используются высокочастотные схемы, понижающие напряжение с помощью электронного трансформатора или какого-либо другого устройства и формирующие сигнал высокой частоты (1000 Гц и более), устраняющий эффект мерцания.

Плодами усилий разработчиков стали последние модели AC-LED сборок, характеризующиеся лучшей совместимостью с существующей инфраструктурой, повышенной надежностью за счет меньшего количества применяемых компонентов и, возможно, меньшим временем выхода на рынок.

Виды AC-LED

Согласно Мискину, на сегодняшнем рынке представлены три основных типа AC-LED: питаемые низким переменным напряжением, непосредственно высоким переменным напряжением и выпрямленным высоким переменным напряжением. Низковольтные светодиоды работают от напряжения 12 В или 24 В и подключаются через магнитный или электронный трансформатор. Такие светодиоды, как правило, самостоятельно выпрямляют переменный ток. Они нашли применение в садово-парковых светильниках, для скрытого освещения и подсветки торговых прилавков. В высоковольтных сборках (от 15 до 55 В) используется топология с мостовым выпрямителем, где светодиоды питаются импульсным током в каждом полупериоде синусоиды. В устройствах с выпрямителем содержатся встроенные схемы управления, не позволяющие пиковым токам достигать опасных для светодиодов значений.

Технология AC-LED является масштабируемой, поскольку количество включаемых в цепочку светодиодов можно выбирать в соответствии с напряжением сети, и применима в осветительных приборах с питанием от 12 до 277 В. В самом деле, для достижения наибольшей эффективности AC-LED могут работать даже в резонансном режиме, что невозможно для DC-LED. Мискин пояснил, что Lynk разработала новый метод, позволяющий управлять AC-LED вблизи границы резонанса, так что даже, если одна лампа будет удалена из цепи или выйдет из строя, оставшиеся будут работать с той же эффективностью. Он сказал: «Мы полагаем, что в будущем частоты повысятся до соответствия RLC-компонентам, что даст возможность поднять КПД до 98%».

Замена ламп

Сегодня основным целевым рынком для низковольтных и высоковольтных конструкций на основе AC-LED является рынок ретрофитных ламп, включающий миниатюрные лампы, такие как G4, G8, GU10 и MR16, а также лампы B10 для люстр. Компании также разрабатывают продукты для A-ламп, ламп класса BR и линейные модули для замены люминесцентных ламп.

Рисунок 1. Питающийся переменным напряжением 220 В 16-ваттный потолочный светильник компании Seoul Semiconductor имеет световой поток 1250 лм, цветовую температуру 3000K и угол обзора 120°.

Рынок потолочных светильников также исключительно привлекателен для устройств с AC-LED, поскольку в таких светильниках, как правило, имеется свободное место для размещения дополнительной электроники. Кроме того, свободное пространство можно занять радиаторами охлаждения. Пример предназначенного для подобных светильников прибора показан на (Рисунке 1). 16-ваттный светодиодный модуль Acrich2 компании Seoul Semiconductor имеет световой поток 1250 лм при цветовой температуре 3000K и угле обзора 120°.

На Рисунке 2 сравнивается DC-LED с двумя функционально аналогичными сборками AC-LED. Лампа MR16 или GU10 (последняя подключается к сети напрямую) – прямые кандидаты на установку модуля с AC-LED.

В конечном счете, стоимость и надежность будут склонять чашу весов в пользу схем с AC-LED, а не в пользу наиболее распространенных сейчас DC-LED. «Мы уже значительно снизили стоимость корпуса, составляющую около 40% стоимости светодиода, за счет перехода к технологии монтажа кристалл-на-плате и использования SMD компонентов», – сказал Уилкокс. Однако он утверждает, что цель достижения цены $10 за эквивалент 60-ваттной лампы, зачастую рассматриваемая как точка принятия продукции потребителем, может быть достигнута только за счет удаления из светодиодных ламп и светильников дорогих электронных компонентов. – «Лучшим способом снижения цены является внедрение AC-LED без драйверов». Он добавил, что первыми продуктами, которые появятся на полках розничных магазинов, будут ретрофитные лампы, не требующие диммирования, некоторые из которых будут иметь довольно крупные размеры, как A19 и BR30.

«Я уверен, что в самое ближайшее время мы увидим лампы, заменяющие 60-ваттные лампы накаливания, по цене $15, а чуть позже цена упадет до $10. Это будет продукция компаний с хорошей репутацией, часть которой не будет содержать драйверов. Самыми подходящими областями применения нового товара станут ретрофитные лампы и потолочные светильники», – сказал Уилкокс.

Рисунок 3. Предназначенный для наружного освещения, модуль SnapBrite компании Lynk Labs питается переменными напряжением 120 В, и при мощности 2 Вт имеет световой поток 120 лм.

Другая важная сфера применения AC-LED – источники подсветки или местного освещения. На Рисунке 3 показан предназначенный для этих целей светодиодный модуль с резистором.
Как отмечалось ранее, чтобы такая продукция стала преобладать на рынке, ее световой поток, эффективность, коэффициент мощности и коэффициент гармоник должны быть, как минимум, не хуже, чем у DC-LED. Впрочем, световой выход и эффективность надо сравнивать на примере конкретного приложения, мы же рассмотрим проблему управления питанием AC-LED.

Управление питанием

Как уже говорилось, плохое управление питанием в части коррекции коэффициента мощности и коэффициента гармоник ограничило выход AC-LED на широкий рынок. Коэффициент мощности равен отношению активной мощности, потребляемой лампой или светильником, к полной мощности. В устройствах с AC-LED нагрузка является нелинейной, поэтому на коэффициент мощности необходимо обращать особое внимание.

Коэффициент гармоник является числовым представлением степени искажения формы кривой тока по сравнению с синусоидальной формой напряжения сети. Гармоники представляют собой нежелательные составляющие тока, кратные основной частоте сети (50 или 60 Гц), приводящие к потерям мощности. Хотя вопрос выходит за рамки этой статьи, стоит отметить, что для уменьшения коэффициента гармоник в устройствах с AC-LED используются различные типы схем согласования, включая резисторы и импульсные источники питания.

Уилкокс отметил, что в линейке продукции Acrich2 блок управления питанием имеет КПД 90% и коэффициент гармоник менее 25%.

Диммирование

Одним из основных преимуществ AC-LED является совместимость с фазоотсекающими (симисторными) диммерами. «Мы можем уменьшить яркость до 2%, что является реальным преимуществом», – утверждает Мискин. Кроме того, Lynk Labs представила технологию, которая «нагревает» цвет свечения при диммировании от 4000K до 2000K с помощью AC-LED и токоограничивающих компонентов.

Выводы

Сборки на основе AC-LED представляют собой конкурентоспособную платформу, особенно на рынке ретрофитных ламп. Падет ли на них выбор производителей ламп и светильников, будет зависеть от характеристик и стоимости таких решений по сравнению со сборками на базе уже проверенных в деле DC-LED. Гонка за создание десятидолларовой замены 60-ваттных ламп накаливания может быть выиграна как одной технологией, так и обеими.

Перевод: Mikhail R по заказу РадиоЛоцман

Светодиоды: виды и схема подключения

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).

Содержание статьи

  • Устройство светодиода
  • Как работает светодиод?
  • Виды и основные параметры светодиодов
  • Применение светодиодов
  • Основные правила подключения светодиодов
  • Основные характеристики светодиодов
  • Способы подключения
  • Как подключить светодиоды к сети переменного тока 220 В через блок питания
  • Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

Устройство светодиода

Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.

Как работает светодиод?

Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.

Виды и основные параметры светодиодов

На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.

По назначению светодиоды разделяют на два вида – индикаторные и осветительные.

  • светодиоды SMD;
  • сверхъяркие Super Flux “Piranha”;
  • DIP светодиоды (Direct In-line Package);
  • Straw Hat («соломенная шляпа»).
  • COB (Chip On Board) светодиоды;
  • SMD LED;
  • филаментные (Filament LED).

Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:

  • DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
  • «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
  • «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
  • SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.

Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:

  • cool white – холодный;
  • warm white – теплый.

Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.

Применение светодиодов

Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.

  • значительная длительность эксплуатации;
  • экологическая безопасность;
  • высокая надежность и безотказность;
  • экономия электроэнергии;
  • высокое качество освещения;
  • низкие эксплуатационные расходы.

Основные правила подключения светодиодов

Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:

  • По длине ножки (кроме SMD). Более длинная ножка является катодом, а короткая – анодом. В SMD-светодиодах имеется срез (ключ), который всегда располагается ближе к катоду.
  • С помощью мультиметра. Прибор устанавливают в режим «Прозвонка». Красный и черный щупы устанавливают на выводы. Если прибор засветился, то, значит, что красный щуп был подключен к аноду, а черный – к катоду. Если свечение не возникло, значит, надо поменять положение щупов. Если результат не изменился (свечение отсутствует), значит, прибор вышел из строя.

Основные характеристики светодиодов

Две главные характеристики, указываемы в паспорте светоизлучающего прибора:

  • Падение напряжения на приборе. Типичное значение – 3,2 В. Также для каждого светодиода существуют максимально допустимые напряжения Umax и Umaxобр – для прямого и обратного включений.
  • Номинальный ток. Обычно эти приборы рассчитаны на силу тока в 20 мА.

Способы подключения

Простейший вариант – подключение к низковольтному источнику постоянного тока.

Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.

Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:

R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:

  • Uпитания – напряжение электропитания, В;
  • Uпаспорт. – падение напряжения, паспортное значение, В;
  • Iном. – номинальный ток.

Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.

P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.

Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.

Как подключить светодиоды к сети переменного тока 220 В через блок питания

Существует несколько типов блоков питания:

  • Стабилизированные источники постоянного напряжения для светодиодов на 5 Вольт и 12 Вольт. При колебаниях параметров сети напряжение на выходе такого источника питания остается постоянным и равным заявленной в паспорте величине. LED-светильники подсоединяют через резисторы.
  • Драйвер – импульсный блок питания со стабилизированным током. Характеристики, которые учитывают при его выборе: максимальное и минимальное выходное напряжение, выходной (рабочий) ток. В драйвере присутствует схема, стабилизирующая ток при скачках входного напряжения 220 В. При подключении светодиодного излучателя к драйверу резистор не требуется.

Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.

Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.

Минусы последовательного соединения:

  • При значительном количестве элементов цепи необходимо выбирать БП большого вольтажа.
  • При выходе из строя одного LED-диода перестает работать вся цепь.

В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.

При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.

Минусы параллельного подключения:

  • большое количество элементов цепи из-за необходимости использования индивидуальных резисторов для каждого диода;
  • существенный рост нагрузки при перегорании одного LED-диода (если используется один мощный резистор на всю цепь).

Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.

Светодиоды с низким напряжением питания

Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Журналы, книги, сборники
▪ Архив статей и поиск
▪ Схемы, сервис-мануалы
▪ Электронные справочники
▪ Инструкции по эксплуатации
▪ Голосования
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

Справочник:
▪ Большая энциклопедия для детей и взрослых
▪ Биографии великих ученых
▪ Важнейшие научные открытия
▪ Детская научная лаборатория
▪ Должностные инструкции
▪ Домашняя мастерская
▪ Жизнь замечательных физиков
▪ Заводские технологии на дому
▪ Загадки, ребусы, вопросы с подвохом
▪ Инструменты и механизмы для сельского хозяйства
▪ Искусство аудио
▪ Искусство видео
▪ История техники, технологии, предметов вокруг нас
▪ И тут появился изобретатель (ТРИЗ)
▪ Конспекты лекций, шпаргалки
▪ Крылатые слова, фразеологизмы
▪ Личный транспорт: наземный, водный, воздушный
▪ Любителям путешествовать — советы туристу
▪ Моделирование
▪ Нормативная документация по охране труда
▪ Опыты по физике
▪ Опыты по химии
▪ Основы безопасной жизнедеятельности (ОБЖД)
▪ Основы первой медицинской помощи (ОПМП)
▪ Охрана труда
▪ Радиоэлектроника и электротехника
▪ Строителю, домашнему мастеру
▪ Типовые инструкции по охране труда (ТОИ)
▪ Чудеса природы
▪ Шпионские штучки
▪ Электрик в доме
▪ Эффектные фокусы и их разгадки

Техническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(200000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
▪ Ваши истории
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua


сделано в Украине

Низковольтное питание светодиодов

Светодиодные источники оптического излучения видимого диапазона, в силу конструктивных особенностей не могут светиться при напряжении ниже 1,6. 1,8 В. Это обстоятельство резко ограничивает возможность применения светодиодов в устройствах, с низковольтным (от одного гальванического элемента) питанием.

Предлагаемые светодиодные излучатели с низковольтным (0,1. 1,6 В) питанием можно использовать для индикации напряжений, передачи данных по оптическим каналам связи и т.д. Для их питания можно использовать и электрохимические элементы сверхмалого напряжения, в которых электролитом служат увлажненная почва или биологически активные среды.

Многообразие схем низковольтного питания светодиодов можно свести к двум основным разновидностям преобразования напряжения низкого уровня в напряжение высокого. Это схемы с емкостными и индуктивными накопителями энергии.

На рис.1 показана схема питания светодиода с использованием принципа удвоения напряжения питания. Генератор низкочастотных импульсов, частота следования которых определяется цепочкой R1-C1, а продолжительность — R2-C1, выполнен на транзисторах p-n-р и n-p-n структуры. С выхода генератора короткие импульсы через резистор R4 подаются на базу транзистора VT3, в коллекторную цепь которого включен красный светодиод HL1 и германиевый диод VD1. Между выходом генератора импульсов и точкой соединения светодиода и германиевого диода подключен электролитический конденсатор С2 большой емкости.


Рис.1. Схема питания светодиода по принципу удвоения напряжения

В период продолжительной паузы между импульсами (транзистор VT2 закрыт и не проводит ток) этот конденсатор заряжается через VD1 и R3 до напряжения источника питания. При генерации короткого импульса транзистор VT2 открывается. Отрицательно заряженная обкладка конденсатора С2 оказывается соединенной с положительной шиной питания. Диод VD1 запирается. Заряженный конденсатор С2 оказывается подключен последовательно с источником питания и нагружен на цепочку: светодиод — переход эмиттер-коллектор транзистора VT3. Поскольку тем же импульсом транзистор VT3 отпирается, его сопротивление эмиттер-коллектор уменьшается. Таким образом, практически удвоенное напряжение питания (исключая незначительные потери) оказывается кратковременно приложенным к светодиоду — следует его яркая вспышка. После этого процесс заряда-разряда конденсатора С2 периодически повторяется.

При использовании светодиодов типа АЛ307КМ с напряжением свечения 1,35. 1,4 В, рабочее напряжение генератора составляет 0,8. 1,6 В. Границы диапазона определены так: нижняя указывает напряжение начала свечения светодиода, верхняя — напряжение, при котором потребляемый устройством ток равен 20 мА.

Поскольку генератор работает в импульсном режиме, генерируются яркие вспышки света, привлекающие внимание. В схеме необходимо использовать хотя и низковольтный, но довольно громоздкий электролитический конденсатор С2 большой емкости.

Источники низковольтного питания светодиодов на основе мультивибраторов изображены на рис.2, 3. Первый из них выполнен на основе асимметричного мультивибратора, вырабатывающего короткие импульсы с большой междуимпульсной паузой. Накопитель энергии — конденсатор C3 — периодически заряжается от источника питания и разряжается на светодиод, суммируя свое напряжение с напряжением питания.


Рис.2. Источник низковольтного питания светодиода на основе асимметричного мультивибратора (импульсный характер свечения)

Генератор (рис.3) обеспечивает, в отличие от предыдущей схемы, непрерывный характер свечения светодиода. Устройство выполнено на основе симметричного мультивибратора и работает на повышенных частотах. В связи с этим емкости конденсаторов в этой схеме достаточно малы. Конечно, яркость свечения заметно понижена, но средний ток, потребляемый генератором при напряжении питания 1,5 В, не превышает 3 мА.


Рис.3. Источник низковольтного питания светодиода на основе симметричного мультивибратора (непрерывный характер свечения)

Преобразователи напряжения конденсаторного типа (с удвоением напряжения) для питания светодиодных излучателей теоретически могут обеспечить снижение рабочего напряжения питания только до 60%. Использование в этих целях многокаскадных умножителей напряжения малоперспективно в связи с прогрессивно возрастающими потерями и падением КПД преобразователя.

Более перспективны в плане дальнейшего снижения напряжения питания преобразователи с индуктивными накопителями энергии. Заметно понизить нижнюю границу напряжения питания стало возможным за счет перехода на LC-варианты схем генераторов, использующих индуктивные накопители энергии.

В качестве индуктивного накопителя энергии в первой из схем (рис.4) использован телефонный капсюль. Одновременно со световым излучением генератор вырабатывает акустические сигналы. При увеличении емкости конденсатора до 200 мкФ генератор переходит в импульсный режим работы, вырабатывая прерывистые световые и звуковые сигналы. В качестве активного элемента используется несколько необычная структура — последовательное соединение транзисторов разного типа проводимости, охваченных положительной обратной связью.


Рис.4. Источник с индуктивным (телефонный капсюль) накопителем энергии

Преобразователи напряжения для питания светодиода на рис.5 и 6 выполнены на аналогах инжекционно-полевых транзисторов. Первый из преобразователей (рис.5) использует комбинированную индуктивно-емкостную схему повышения выходного напряжения, сочетая принцип емкостного удвоения напряжения с получением повышенного напряжения на коммутируемой индуктивности.


Рис.5. Преобразователь напряжения для питания светодиода на аналоге инжекционно-полевого транзистора №1

Наиболее прост генератор на аналоге инжекционно-полевого транзистора (рис.6), где светодиод одновременно исполняет роль конденсатора и является нагрузкой генератора. Устройство работает в узком диапазоне питающих напряжений, однако яркость свечения светодиода довольно высока, поскольку преобразователь является чисто индуктивным и имеет высокий КПД.


Рис.6. Преобразователь напряжения для питания светодиода на аналоге инжекционно-полевого транзистора №2

На рис.7 показан генератор трансформаторного типа для питания светодиодов низковольтным напряжением. Генератор содержит три элемента, одним из которых является светоизлучающий диод. Без светодиода устройство является простейшим блокинг-генератором, причем на выходе трансформатора может формироваться довольно высокое напряжение. Если в качестве нагрузки генератора использовать светодиод, он начинает ярко светиться. В схеме в качестве трансформатора использовано ферритовое кольцо Ф1000 К10x6x2,5. Обмотки трансформатора имеют по 15.. .20 витков провода ПЭВ диаметр 0,23 мм. В случае отсутствия генерации концы одной из обмоток трансформатора меняют местами.


Рис.7. Генератор трансформаторного типа для питания светодиодов низковольтным напряжением

При переходе на высокочастотные германиевые транзисторы типа 1Т311, 1Т313 и использовании унифицированных импульсных трансформаторов типа МИТ-9, ТОТ-45 и др., нижнюю границу рабочих напряжений можно опустить до 0,125 В.

Напряжение питания всех рассмотренных схем, во избежание повреждения светодиодов, не должно превышать 1,6. 1,7 В.

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

Как узнать напряжение питания светодиода

Светодиод — полупроводниковый прибор, который преобразует прямой электрический ток в световое излучение. Английское название LED расшифровывается, как light emitting diode. Если раньше светодиоды представляли интерес только для узкого круга ученых, то сейчас их активно используют оформители для украшения помещений и разработки концепции светодизайна. В отличие от ламп накаливания, светодиоды преобразуют ток в световое излучение с минимальными потерями, то есть LED-лампы практически не нагреваются при наличии хорошего теплоотвода.

Если еще в середине прошлого века ученым удавалось получить мизерный КПД только в 2%, то сейчас светодиоды в среднем выдают КПД 35-45%, хотя встречаются и настоящие рекордсмены, у которых КПД достигает фантастических 60%. Светодиоды могут работать на протяжении длительного времени. Приборы относятся к низковольтным, то есть безопасным для человека. Основное эстетическое достоинство светодиодов — свет, излучаемый им, «чистый», так как лежит в узком диапазоне спектра. У приборов есть несколько основных ТХ: мощность, сила потребляемого тока, цветовая температура и напряжение. О том, как определить напряжение и поговорим дальше.

Как определить напряжение питания светодиодов

Источник питания для светодиодов — основная комплектующая деталь, которая преобразует сетевое напряжение. Как известно светодиоды питаются током, но напряжение, которое подается в данном случае, значения не имеет. Это может быть как 12 В, так и 1000 В. Главное для светодиода — это ток. При его нехватке свет лампочек тускнеет, а при переизбытке они начинают нагреваться, и даже теплоотвод не всегда может справиться. Если простая лампа накаливания «самостоятельно» выбирает для себя ток, то светодиод сам выбирает напряжение. Если светодиод требует напряжение в 5 В, а блок питания подает ему, к примеру, 5 В, то высока вероятность того, что светодиод просто сгорит. Дело в том, что возникает «конфликт» между источником питания и светодиодом. Первый пытается честно выдать 5 В, а второй старается взять только положенные для себя 3 В. Светодиод может «просадить» напряжение до нужного, если блок питания слабенький, но чаще в этой схватке все же побеждает хаос и разрушение и светодиод перегорает.

Чтобы подобных проблем не возникло, необходимо стабилизировать ток. Самый простой вариант — резистор. Он подключается последовательно со светодиодами. Резистор помогает ослабить источник питания и заставить его выдавать светодиоду нужное напряжение. Если речь идет о мощных светодиодах, то слабенькому резистору с ними не справиться. В этой ситуации потребуется полноценный стабилизатор.

Расчет резистора провести довольно просто. Для вычислений необходимо знать напряжение питания, падение напряжения и ток. От значения напряжения питания отнимают падение напряжения, а получившуюся величину делят на ток. Теперь остается только выбрать резистор с ближайшим стандартным сопротивлением. Некоторые предпочитают вообще убирать из формулы падение напряжения, так как его точное значение не всегда известно, но ниже приведены два способа для определения этой величины.

Как узнать падение напряжения на светодиоде

Падение напряжения на светодиоде — это одна из его важных характеристик. С помощью падения напряжения можно узнать, на сколько вольт уменьшится напряжение во время прохождения через один светодиод, если соединение было последовательным. К примеру, если падение напряжения на светодиоде 2,3 вольта, а напряжение питания 24 вольт, то после первой лампочки остальным останется 24—2,3=21,7 вольт. После прохождения второго светодиода значение станет еще меньше: 21,7—2,3=19,4 вольт.

Подсчеты можно проводить до тех пор, пока полученное значение не будет меньше падения напряжения, то есть на следующий диод его уже не хватит. После проведения нехитрых подсчетов можно прийти к выводу, что запитать при таких условиях можно только 10 светодиодов, а 11-й сиротливо останется в сторонке. Если в ленте их больше, то на остальных уже не хватит. Падение напряжения можно измерить двумя способами: практическим и теоретическим.

Теоретический метод

Для теоретического метода определения падения напряжения в светодиоде необходимы таблицы. Изменения этой характеристики напрямую связаны с его цветом. Для изготовления светодиодов разных цветов используются разные полупроводниковые материалы. Здесь производители во мнении не сходятся, а единого стандарта нет, поэтому каждый делает из того, из чего считает нужным. Падение напряжения во многом определяется химическим составом полупроводника. Точных значений для светодиодов одного цвета нет, но существует определенный диапазон, в котором они варьируются. К примеру, для синих и белых 3—3,6 В, для красных 1,8—2В, для жёлтых и зелёных 2—2,4В. Эти данные можно посмотреть по даташиту.

У белых светодиодов показатель самый высокий, а в хвосте списке расположились красные. Хотя данные и приблизительные, этого обычно достаточно для проведения расчетов. Если светодиоды достались по наследству без документации, то можно поискать в интернете похожие, а после скачать документацию для них. Такой метод, к сожалению, совершенно ненадежен, так как под идентичными корпусами может скрываться разная начинка, соответственно и характеристики у нее будут другими.

Практический метод

В реальности проще это падение напряжения на светодиоде измерить вольтметром в схеме, чем выискивать в графиках и таблицах. Не нужно объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода. Если возникают трудности с идентификацией, то отличить их легко. Катод короче анода, что видно невооруженным глазом.

Итоги: что делать, если напряжение светодиода упало

Падение напряжения может сильно колебаться даже у одинаковых светодиодов от одного производителя в рамках одной партии. Этот показатель меняется по мере изнашивания светодиода. Также эта характеристика зависит от температуры. Сильный нагрев сокращает срок службы светодиода, поэтому необходим хороший теплоотвод и стабилизатор.