Внутреннее напряжение это физика

Научная библиотека популярных научных изданий

Внутреннее напряжение это физика

Внутреннее напряжение это физика

Различают внутренние напряжения трех родов.

Внутренние напряжения первого рода — это зональные внутренние напряжения, возникающие между отдельными зонами сечения и между, различными частями детали. Чем больше градиент температур по сечению, возникающий при термической обработке и между различными частями детали, который зависит от скорости и равномерности охлаждения, размера детали и ряда других причин, тем большего значения достигают внутренние напряжения первого рода.

Внутренние напряжения второго рода возникают внутри зерна или между соседними зернами.

Внутренние напряжения второго рода возникают между различными фазами вследствие того, что у них разные коэффициенты линейного расширения, или из-за образования новых фаз, имеющих разные объемы. Внутренние напряжения второго рода не зависят от тех факторов, от которых зависят напряжения первого рода,

например скорости охлаждения и других факторов. Поскольку внутренние напряжения второго рода возникают между отдельными элементами структур, их иногда называют структурными напряжениями, а внутренние напряжения первого рода — зональными термическими напряжениями.

Внутренние напряжения третьего рода возникают внутри объема порядка нескольких элементарных ячеек кристаллической решетки.

Случай, когда инородный атом в твердом растворе создает вокруг себя упругие искажения кристаллической решетки, представляет собой пример возникновения напряжений третьего рода.

Какого бы рода ни были напряжения, в конечном итоге они вызывают одинаковый эффект — упругие деформации и искажения кристаллической решетки.

Основным методом изучения и измерения внутренних напряжений является рентгенографический. Для определения напряжений первого рода применяют и механический метод.

Внутренние напряжения впервые начал изучать русский инженер Н. В. Калакуцкий (в 1886-1887 гг.). Г. Закс разработал простой метод математического расчета. Теперь по внутренним напряжениям в стали и других металлах имеются многочисленные исследования и обширная литература.

Внутренние напряжения первого рода, влияние которых особенно существенно, так как только они вызывают коробление детали и трещины, зависят не только от внешних факторов (скорость охлаждения, размер и форма детали и т. д.), но и от свойств металла. Если металл обладает малой пластичностью, то возникающие внутренние напряжения не снимаются пластической деформацией, и если напряжения по величине превзойдут значение предела прочности, то возникнут трещины.

В процессе нагрева и охлаждения внутренние напряжения изменяются, например при нагреве поверхностные слои металла испытывают напряжения сжатия, так как они стремятся расшириться, а этому препятствуют более холодные слои металла сердцевины. Наоборот, при охлаждении поверхности слои, имеющие более низкую температуру, чем сердцевина, испытывают напряжения растяжения, а сердцевина — напряжения сжатия.

Окончание охлаждения соответствует выравниванию температуры во всем сечении. Значит ли это, что установление одинаковой температуры по всему объему приводит к устранению напряжений? Нет. После того как охлаждение и, следовательно, сокращение объема поверхности закончилось, некоторое время центральные части еще охлаждаются и объем сердцевинных слоев уменьшается, возникают внутренние напряжения, которые к моменту окончания охлаждения во всем сечении принимают определенное значение.

Напряжения, которые сохранились в детали в результате охлаждения, называются остаточными напряжениями.

Закаленная сталь всегда находится в структурно напряженном состоянии. Отпуск — необходимое и радикальное средство уменьшения остаточных напряжений.

Нагрев стали при отпуске увеличивает пластичность; это позволяет в отдельных объемах упругим деформациям превратиться в пластические, что уменьшает напряжения.

Чем выше температура отпуска и чем больше его продолжительность, тем в большей степени снимаются напряжения (рис. 242).

Рис. 242. Влияние температуры и продолжительности отпуска стали с 0,3 % С на остаточные напряжения

Рис. 243. Кривые охлаждения для различных способов закалки, нанесенные на диаграмму изотермического распада аустенита

Отпуск при 550 °С практически полностью устраняет закалочные напряжения (исходные напряжения с 600 МПа уменьшились до 50-100 МПа).

Внутреннее напряжение это физика

Ø Механическое напряжение

Ø Упругость, пластичность, хрупкость и твердость

Ø Закон Гука. Модуль упругости.

Механическое напряжение

В деформированном твердом теле, вследствие смещения частиц в кристаллической решетке относительно друг друга, возникают внутренние силы, которые создают в материале напряжение.

Механическим напряжением … называется величина, характеризующая действие внутренних сил в деформированном твердом теле. Механическое напряжение… измеряется внутренней силой, действующей на единицу площади сечения деформированного тела:

Выведем единицу измерения напряжения А:

В системе СИ за единицу s принимается такое механическое напряжение в материале, при котором на площадь сечения в 1 м2 действует внутренняя сила в 1 Н.

Отметим, что все изложенное верно, если напряжение во всех точках сечения одинаково.

Если внутренняя сила действует перпендикулярно сечению, то напряжение называется нормальным sн (например, при деформации продольного растяжения). Если же эта сила действует параллельно сечению, то напряжение называют касательным sк (например, при деформации сдвига).

Упругость, пластичность, хрупкость и твердость

Свойство деформированных твердых тел принимать свою первоначальную форму и свой объем после прекращения действия внешних сил называется упругостью. Деформация тела, которая исчезает после снятия внешних нагрузок на это тело, называется упругой деформацией. Поскольку упруго деформированное тело стремится вернуть свою форму и свой объем, оно действует на тела, вызвавшие его деформацию, с некоторой силой, которую называют Силой упругости. Внутренние силы, возникающие в материале при деформации, тоже называют силами упругости.

Опыт показывает, что тело можно деформировать настолько, что оно не восстановит свою прежнюю форму,- когда внешние воздействия на него исчезнут. Свойство тел сохранять деформацию после снятия внешних нагрузок называют Пластичностью. Остаточная деформация тела, которая сохраняется после снятия внешних нагрузок на тело, называется Пластической деформацией. Упругость (пластичность) тел в основном определяется материалом, из которого они сделаны. Например, сталь и резина упруги, а медь и воск пластичны. Деление материалов на упругие и пластичные условно, так как каждый материал в большинстве случаев обладает одновременно и пластичностью, и упругостью. Например, стальную пружину можно растянуть так, что она уже не сожмется. С другой стороны, медная спираль при небольших растяжениях пружинит (т. е. сжимается, если ее отпустить).

Кроме того; свойства материала сильно зависят от внешних условий. Например, обычно пластичный свинец при низких температурах становится упругим, а упругая сталь при очень больших давлениях и высоких температурах становится пластичной. Опыт показывает, что при постепенном увеличении нагрузок на материал в теле сначала возникают упругие деформации, а затем появляются пластические деформации.

Важными механическими свойствами материалов, которые приходится учитывать в машиностроении, являются хрупкость и твердость.

На практике встречаются материалы, которые при относительно небольших нагрузках упруго деформируются, а при увеличении внешней нагрузки разрушаются прежде, чем у них появится остаточная деформация. Такие материалы называются хрупкими (например, стекло, кирпич). Хрупкие материалы очень чувствительны к ударной нагрузке. При резком ударе хрупкие тела сравнительно легко разрушаются. Твердость материала можно определить различными способами. Обычно более твердым считают тот материал, который оставляет царапины на поверхности другого материала. Опыт показал, что наиболее твердым материалом является алмаз. В настоящее время твердость материала определяют вдавливанием в его поверхность алмазного конуса или стального шара (рис. 13.20). Чем меньше войдет конус в материал при определенной силе вдавливания, тем тверже этот материал.

Твердость материала существенно влияет на величину трения качения. Например, шариковые подшипники делают из твердой стали, так как при этом трение в них получается очень маленьким. Оказывается, твердость материала связана с его прочностью: чем тверже материал, тем он прочнее. Таким образом, определение твердости материала имеет существенное практическое значение.

Закон Гука. Модуль упругости.

Устройство динамометров — приборов для определения сил, основано на том, что упругая деформация прямо пропорциональна силе, вызывающей эту деформацию.

Связь между упругими деформациями и внутренними силами в материале впервые была установлена английским ученым Р. Гуком.

В настоящее время закон Гука формулируется следующим образом:

Механическое напряжение в упруго деформированном теле прямо пропорционально относительной деформации этого тела:

Величина k, характеризующая зависимость механического напряжения в материале от рода последнего и от внешних условий, называется Модулем упругости. Модуль упругости измеряется механическим напряжением, которое возникает в материале при относительной упругой деформации, равной единице.

Единицей измерения модуля упругости в системе СИ является 1 Н/м2.

Относительную упругую деформацию обычно выражают числом, много меньшим единицы. За редким исключением, получить e, равное единице, практически невозможно, так как материал задолго до этого разрушается. Однако модуль упругости можно найти из опыта по известному напряжению s и при малом e, так как K в. формуле (13.5) — величина постоянная.

В качестве примера рассмотрим применение закона Гука к деформации одностороннего растяжения или сжатия. Формула (13.5) для этого случая принимает вид

Где Е — Обозначает модуль упругости для этого вида деформации; его называют модулем Юнга. Модуль Юнга измеряется нормальным напряжением, которое должно возникнуть в материале при относительной деформации равной единице, т. е, при увеличении длины образца вдвое (DL=L). Отметим, что численное значение модуля Юнга определяют по результатам опытов, проведенных в пределах упругой деформации, и при расчетах берут из таблиц. Поскольку sн=F/S, Из (13.6) получаем: ,F/S=EDL/L, откуда

Здесь за F можно принимать внешнюю силу, которая изменяет, длину тела на DL при поперечном сечении тела S.

Наибольшее напряжение в материале, после исчезновения которого форма и объем тела восстанавливаются, называется пределом упругости. Формулы (13.5) и (13.7) справедливы, пока не перейден предел упругости. При достижении предела упругости в теле возникают пластические деформации. В этом случае может наступить момент, когда при одной и той же нагрузке деформация начнет возрастать и материал разрушается. Нагрузку, при которой в материале возникает наибольшее возможное механическое напряжение, называют разрушающей.

При постройке машин и сооружений всегда создают запас прочности. Запасом прочности называется величина, показывающая, во сколько раз разрушающая нагрузка в самом напряженном месте конструкции больше, чем фактическая максимальная нагрузка.

Механическое напряжение: определение, формула, единицы измерения

Степень изменения формы тела при деформации зависит не только от природы вещества, но и такой физической величиной, как механическое напряжение. Если рассматривать атомную кристаллическую решетку такого вещества, можно отметить постоянное взаимодействие молекул друг с другом. Это состояние напрямую влияет на величину механического напряжения.

Что такое деформация? Виды деформации

Явление, при котором происходит изменение формы тела под действием какой-либо внешней силы, называется деформацией. Ее природа заключается в движении молекул вещества или целых слоев кристаллической решетки, что приводит к возникновению так называемых дефектов. Степень деформирования зависит от многих факторов, среди которых мы рассмотрим механическое напряжение.

Выделяют несколько видов изменения формы тела:

  1. Деформация растяжения, когда внешняя сила воздействует вдоль всего тела. Имеет прикладное значение при изготовлении веревок, тросов и строительных материалов;
  2. Деформация сжатия. В этом случае вектор действия внешней силы совпадает с продольной осью тела, однако он направлен в сторону центра этого тела. Применяется этот вид деформирования при изготовлении металла и строительных материалов для придания им прочности;
  3. Деформация сдвига возникает под действием внешней силы, которая направлена перпендикулярно продольной оси и вызывает движение различных плоскостей тела относительно друг друга;
  4. Деформация изгиба характеризуется искривлением главной оси тела, например, когда имеется две точки опоры. Сила, которую может выдержать тот или иной предмет, а также механическое напряжение играют большую роль при создании строительных материалов;
  5. Деформация кручения возникает при повороте тела вокруг его продольной оси. Этот вид деформации можно наглядно продемонстрировать на пружинке, которая после прекращения воздействия внешней силы восстановит свою форму.

Упругая и пластическая деформация

Механическое напряжение, которое зависит от природы вещества, влияет на способность тела восстанавливать свою первоначальную форму после возникновения дефекта в кристаллической решетке. По этому признаку выделяют упругую и пластическую деформацию.

При пластической деформации тело после воздействия внешней силы не способно восстановить прежнюю форму. Например, пластилин при надавливании на него пальцем сохраняет образовавшуюся ямку.

Упругая деформация характерна для тех веществ, которые способны восстанавливать свою первоначальную форму после воздействия на них внешней силы. Примером может служить та же пружина, которая при любом описанном выше виде деформации возвращается в первоначальное состояние.

Механическое напряжение: формула и определение

Величина механического напряжения характеризуется внутренними силами молекул, которые направлены против давления и деформации тела, на единицу площади.

Различают два вида напряжения:

  1. Нормальное напряжение приложено на единицу площади сечения, параллельного главной оси тела.
  2. Касательное механическое напряжение приложено на единицу площади сечения любой другой плоскости сечения.

Для математического вычисления механического напряжения используется формула: Q=F/S.

Единицы механического напряжения

Величина Q в СИ измеряется в паскалях (Па) и зависит от внутренней силы сопротивления деформации, а также площади тела. Сейчас можно встретить и другие единицы измерения механического напряжения. Среди них атмосфера, торр, бар, физическая и техническая атмосфера, метр водяного столба, миллиметр (дюйм) ртутного столба, фунт-сила на квадратный дюйм и т. д.

Общие сведения о технологии авиадвигателестроения

Что такое деформация? Виды деформации

Явление, при котором происходит изменение формы тела под действием какой-либо внешней силы, называется деформацией. Ее природа заключается в движении молекул вещества или целых слоев кристаллической решетки, что приводит к возникновению так называемых дефектов. Степень деформирования зависит от многих факторов, среди которых мы рассмотрим механическое напряжение.

Выделяют несколько видов изменения формы тела:

  1. Деформация растяжения, когда внешняя сила воздействует вдоль всего тела. Имеет прикладное значение при изготовлении веревок, тросов и строительных материалов;
  2. Деформация сжатия. В этом случае вектор действия внешней силы совпадает с продольной осью тела, однако он направлен в сторону центра этого тела. Применяется этот вид деформирования при изготовлении металла и строительных материалов для придания им прочности;
  3. Деформация сдвига возникает под действием внешней силы, которая направлена перпендикулярно продольной оси и вызывает движение различных плоскостей тела относительно друг друга;
  4. Деформация изгиба характеризуется искривлением главной оси тела, например, когда имеется две точки опоры. Сила, которую может выдержать тот или иной предмет, а также механическое напряжение играют большую роль при создании строительных материалов;
  5. Деформация кручения возникает при повороте тела вокруг его продольной оси. Этот вид деформации можно наглядно продемонстрировать на пружинке, которая после прекращения воздействия внешней силы восстановит свою форму.

Как возникает напряжение?

Все вещества состоят из атомов, представляющих собой положительно заряженное ядро, вокруг которого с большой скоростью кружатся более мелкие отрицательные электроны. В общем случае атомы нейтральны, так как количество электронов совпадает с числом протонов в ядре.

Однако если некоторое количество электронов отнять из атомов, то они будут стремиться притянуть такое же их количество, формируя вокруг себя плюсовое поле. Если же добавить электронов, то возникнет их избыток, и отрицательное поле. Формируются потенциалы – положительный и отрицательный.

При их взаимодействии возникнет взаимное притяжение.

Абрамян Евгений Павлович Доцент кафедры электротехники СПбГПУ

Чем больше будет величина различия – разность потенциалов – тем сильнее электроны из материала с их избыточным содержанием будут перетягиваться к материалу с их недостатком. Тем сильнее будет электрическое поле и его напряжение.

Если соединить потенциалы с различными зарядами проводников, то возникнет электрический ток – направленное движение носителей заряда, стремящееся устранить разницу потенциалов. Для перемещения по проводнику зарядов силы электрического поля совершают работу, которая и характеризуется понятием электрического напряжения.

Упругая и пластическая деформация

Механическое напряжение, которое зависит от природы вещества, влияет на способность тела восстанавливать свою первоначальную форму после возникновения дефекта в кристаллической решетке. По этому признаку выделяют упругую и пластическую деформацию.

При пластической деформации тело после воздействия внешней силы не способно восстановить прежнюю форму. Например, пластилин при надавливании на него пальцем сохраняет образовавшуюся ямку.

Упругая деформация характерна для тех веществ, которые способны восстанавливать свою первоначальную форму после воздействия на них внешней силы. Примером может служить та же пружина, которая при любом описанном выше виде деформации возвращается в первоначальное состояние.

Виды напряжения

Постоянное напряжение

Напряжение в электрической сети постоянно, когда с одной ее стороны всегда положительный потенциал, а с другой – отрицательный. Электрический ток в этом случае имеет одно направление и является постоянным.

Напряжение в цепи постоянного тока определяется как разность потенциалов на его концах.

При подключении нагрузки в цепь постоянного тока важно не перепутать контакты, иначе устройство может выйти из строя. Классическим примером источника постоянного напряжения являются батарейки. Применяют сети постоянного тока, когда не требуется передавать энергию на большие расстояния: во всех видах транспорта – от мотоциклов до космических аппаратов, в военной технике, электроэнергетике и телекоммуникациях, при аварийном электрообеспечении, в промышленности (электролиз, выплавка в дуговых электропечах и т.д.).

Переменное напряжение

Если периодически менять полярность потенциалов, либо перемещать их в пространстве, то и электрический ток устремится в обратном направлении. Количество таких изменений направления за определенное время показывает характеристика, называемая частотой. Например, стандартные 50 герц означают, что полярность напряжения в сети меняется за секунду 50 раз.

Напряжение в электрических сетях переменного тока является временной функцией.

Чаще всего используется закон синусоидальных колебаний.

Так получается за счет того, что переменный ток возникает в катушке асинхронных двигателей за счет вращения вокруг нее электромагнита. Если развернуть вращение по времени, то получается синусоида.

Переменный ток применяют при необходимости передавать энергию на значительные расстояния. В этих случаях эффективно использование трехфазных сетей: потери электроэнергии в проводах минимальны, простая электрогенерация (благодаря трехфазным электродвигателям без коллектора), выгодно экономически.

Трехфазный ток получают в трехфазных электродвигателях.

В них имеются сразу три катушки проводов, расположенных равномерно по кругу – через 120 градусов. Поэтому и синусоиды трехфазного тока отстают друг от друга на этот угол. Геомертическое представление трехфазного напряжения и тока выглядит в виде векторной диаграммы.

Абрамян Евгений Павлович Доцент кафедры электротехники СПбГПУ

Трехфазная электросеть состоит из четырех проводов – трех фазных и одного нулевого. напряжение между проводами нулевым и фазным равно 220 В и называется фазным. Между фазными напряжение также существует, называется линейным и равно 380 В (разность потенциалов между двумя фазными проводами). В зависимости от вида подключения в трехфазной сети можно получить или фазное напряжение, или линейное.

Механическое напряжение: формула и определение

Величина механического напряжения характеризуется внутренними силами молекул, которые направлены против давления и деформации тела, на единицу площади.

Различают два вида напряжения:

  1. Нормальное напряжение приложено на единицу площади сечения, параллельного главной оси тела.
  2. Касательное механическое напряжение приложено на единицу площади сечения любой другой плоскости сечения.

Для математического вычисления механического напряжения используется формула: Q=F/S.

Напряжение в точке тела

Напряженное состояние в точке тела является ключевым понятием в сопромате. Необходимость введения понятия напряжения в точке для суждения об интенсивности внутренних сил в некоторой точке сечения стержня вызвана неравномерным распределением внутренних сил по длине и поперечному сечению в общем случае нагружения.

Напряжение в точке тела K (обозначено буквой p) – это интенсивность внутренней силы , возникающей на бесконечно малой площадке в окрестности данной точки (рис. 1.4, а).

В количественном выражении .

Понятие о напряжении в точке твердого тела в некотором смысле напоминает понятие о давлении, действующем, например, внутри жидкости. Однако давление в точке жидкости одинаково во всех направлениях. Если проведем через точку K тела другое сечение, иной будет внутренняя сила. Следовательно, иным будет и напряжение, хотя оно возникает в той же самой точке K.

Напряжение в точке тела в разных направлениях (на разных площадках, проходящих через данную точку тела) может быть различным (в частности, оно может возникать только в одном направлении).

Понятие о напряжении в точке деформируемого твердого тела ввел в 1822 г. французский ученый Огюстен Луи Коши.

Основную роль в расчетах прочности играет не полное напряжение p, а его проекции на оси координат x, y и z: нормальное напряжение ( – сигма), направленное по перпендикуляру к площадке (параллельно оси z), и касательные напряжения ( – тау), лежащие в плоскости сечения и направленные, соответственно, вдоль осей x и y (рис. 1.4, б). Первый индекс у касательных напряжений характеризует нормаль к площадке z, на которой они возникают.

Между полным (), нормальным () и касательными напряжениями ( и ) существует зависимость:

Касательные напряжения служат мерой тенденции одной части сечения смещаться (или скользить) относительно другой его части.

Единицы нормальных и касательных напряжений в СИ – паскаль (Па). Один паскаль – это напряжение, при котором на площадке в один квадратный метр возникает внутренняя сила, равная одному ньютону (то есть равная, приблизительно, весу одного яблока). Как мы увидим в дальнейшем, эта единица напряжения мизерно мала. В сопромате чаще используются другие единицы:

1 МПа = 106 Па; 1 кН/см2 = 107 Па.

В технической системе единиц напряжения измеряются в килограммах силы на миллиметр (сантиметр) в квадрате (кгс/мм2 или кгс/см2) . Следует запомнить, что 1 кН/см2 » 1 кгс/мм2.

Глоссарий по физике

Напряжение механическое

— мера внутренних сил, возникающих при деформации материала. Для введения понятия механического напряжения мысленно вырезается из среды некоторый объём, по поверхности N к-рого распределены силы взаимодействия с остальной частью среды, возникающие при деформации.

Если DP — равнодействующая (гл. вектор) сил взаимодействия на элементе поверхности DN, содержащем рассматриваемую точку А, то предел отношения DP/DN при DN0 называется вектором напряжения Sn в точке А на площадке с нормалью п. Величины проекций вектора механического напряжения на нормаль n и на касательную плоскость наз. нормальными (sn

) и касательными (тn) напряжениями. Механическое напряжение называется условным, если при его вычислении сила относится к площади сечения в недеформиров. состоянии, и истинным, если учтено изменение площади при деформации. Чтобы определить напряж. состояние в точке, надо найти величины, по к-рым можно вычислить H. м. на любой из бесчисленного множества площадок, проходящих через эту точку.

Вектор механического напряжения S1, действующий на элементарной площадке, перпендикулярной оси Ox1, в проекциях на оси координат Ox1x2x3 обозначают через s11, s12, s13, а для элементарных площадок, перпендикулярных осям Ох2 и Ox3, — через s21, s22, s,23 и s31, s32, s33. При этом s11, s22, s33-нормальные H. м., а s13 = s21, s23 = s32, s31=s13 — касательные Н. м. Шесть величин sij(i, j=1, 2, 3) образуют тензор напряжений в рассматриваемой точке. H. м. на любой площадке в той же точке вычисляется через величины sij, т. е. тензор H. м. полностью определяет напряж. состояние в точке. Если известны sij как функции координат, то они определяют напряж. состояние всего тела. Напряж. состояние наз. однородным, если sij не зависит от координат точки.

Величина s = (s11 + s32 + s33)/3 называется средним (гидростатическим) механическим напряжением. В каждой точке тела есть 3 взаимно перпендикулярные площадки, на к-рых касательные H. м. равны нулю. Перпендикулярные к ним направления наз. главными осями механического напряжения в точке, а нормальные механические напряжения на них s1, s2, s3 — главными H. м. См. также Девиатор напряжений, Интенсивность напряжений.

Непосредственно механическое напряжение не измеряется. В однородном напряж. состоянии механическое напряжение вычисляется через величины действующих на тело сил. В неоднородном напряж. состоянии H. м. определяется косвенно — по эффектам его действия, напр. по пьезоэлектрич. эффекту, эффекту двойного лучепреломления (см. Поляризационно-оптический метод исследования напряжений).

Литература по механическим напряжениям

  1. Тимошенко С. П., Гудьер Дж., Теория упругости, пер. с англ., M., 1975.

к библиотеке к оглавлению FAQ по эфирной физике ТОЭЭ ТЭЦ ТПОИ

Знаете ли Вы,

что, как ни тужатся релятивисты, CMB (космическое микроволновое излучение) — прямое доказательство существования эфира, системы абсолютного отсчета в космосе, и, следовательно, опровержение Пуанкаре-эйнштейновского релятивизма, утверждающего, что все ИСО равноправны, а эфира нет. Это фоновое излучение пространства имеет свою абсолютную систему отсчета, а значит никакого релятивизма быть не может. Подробнее читайте в FAQ по эфирной физике.

Внутренние напряжения

Отклонение действующих сил от номинальной величины

Другой причиной неточности расчета является затруднительность определения в ряде случаев истинной величины действующих нагрузок. Особенно это относится к переменным, пульсирующим и ударным на­грузкам.

Чем больше упругость системы, т. е. чем длиннее и податливее детали, меньше их сечения, моменты инерции и модуль упругости их материала, тем меньше фактическая сила, напрягающая детали, и в тем более ослабленном виде, приходят силы к последним звеньям механизма. Введение упругих связей в систему, например стяжка упругими болтами, установка пружинных муфт между валами и конечным элементом (маховик, гребной винт, электродвигатель, редуктор), упругая крутильная подвеска двигателя и т. д. резко снижают максимальные напряжения в системе.

Увеличение массы промежуточных деталей повышает мгновенное зна­чение максимальных сил, действующих на предшествующие детали, и уменьшает силы, действующие на последующие (аналогично действию шабота в молотах, поглощающего энергию удара).

проч­ность материала значительно возрастает с увеличением скорости нагружения.

Повышение прочности при динамических нагрузках обусловлено отставанием внутри- кристаллических пластических деформаций происходящих с относительно небольшой ско­ростью, от нарастания напряжений. Так как скорость перемещения дислокаций не может превышать местной скорости звука, то напряжение распространяется через ударную волну.

Наиболее чувствительны к скорости деформации пластичные металлы, в частности низкоуглеродистые стали, у которых отмечено повышение динамической прочности в 2,5 — 3 раза по сравнению со статической.

В материале неизбежно существуют внутренние напряжения, воз­никающие при изготовлении деталей, а также в процессе эксплуатации. Реальная прочность детали зависит от взаимодействия внутренних напря­жений и напряжений, вызываемых действием внешних нагрузок.

При назначении величины допустимых напряжений не учитывают предысторию детали (влияние технологии ее изготовления) и последующую историю (постепенное изменение механических свойств материала в процессе работы машины). Эти изменения могут действо­вать разупрочняюще и упрочняюще. Разупрочняющими факторами являются коррозия, износ и повреждение поверхности деталей, накопление микроповреждений в результате много­кратно повторных нагружений, местный отпуск в результате нагрева под действием цикли­ческих нагрузок.

К числу упрочняющих факторов относятся процессы «тренировки» материала действием кратковременных напряжений, превосходящих предел текучести; деформационное упрочнение, вызываемое структурными изменениями в напряженных микрообъемах материала; само­произвольно протекающие процессы старения, сопровождающиеся кристаллической перестройкой материала и рассеиванием внутренних напряжений. Положительно влияет приспособляе­мость конструкции — общие или местные пластические деформации, возникающие под дей­ствием перегрузок и вызывающие перераспределение нагрузок. Определенный упрочняющий эффект дает износ первых стадий (сглаживание микронеровностей), способствующий увели­чению фактичной площади контактирующих поверхностей, снижению пиков давлений и выравниванию нагрузки на поверхности.

Дефекты, возникающие при изготовлении детали и эксплуатации, в значительной мере являются случайными. Это обстоятельство отчасти объясняет хорошо известный факт рас­сеивания прочностных характеристик деталей. Некоторые детали из одной и той же партии имеют высокую долговечность, а другие – очень низкую в результате оставшихся незаме­ченными первоначальных или возникших, при эксплуатации новых дефектов.

Внутренние напряжения принято делить на три категории:

− напряжения первого рода вызываются крупными дефектами материала; возникают и уравновешиваются в макрообъемах (иногда их условно называют макронапряжениями);

− напряжения второго рода вызываются неоднородностью кри­сталлической структуры; возникают и уравновешиваются в пределах кри­сталлитов и групп кристаллитов (микронапряжения);

− напряжения третьего рода вызываются дефектами атомно­кристаллических решеток; возникают и уравновешиваются в пределах элементарных атомно-кристаллических ячеек и их групп (субмикро- напряжения).

Напряжения первого рода возникают чаще всего как результат техно­логических процессов, которым подвергают деталь при операциях формо­изменения.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет