- Как соединить оптико волоконный кабель?
- Монтаж ВОЛС. Оптические разъемы
- Что важно учитывать?
- Но это еще не все сложности
- Виды оптических патчкордов, пигтейлов, адаптеров
- Что означают все эти буквы?
- Типы полировки (шлифовки) оптоволоконных разъемов
- Как работает интернет по оптоволоконному кабелю
- Что такое оптоволоконный интернет и чем он отличается от обычного
- Описание технологии, конструкция кабеля
- Какие имеет ограничения
- Прокладка оптоволокна на местности
- В грунте
- Подвешивание на опорах
- Прокладка в канализации
- Внутри помещений
- Как происходит подключение к интернету через оптоволокно
- Монтаж оборудования и подключение модема
- Создание и настройки сети интернет и схема ввода
- Оптоволоконный кабель: плюсы и минусы
- Чем оптоволоконный кабель отличается от медного
- Преимущество оптоволоконного кабеля
- Недостатки оптоволоконного кабеля
- Оптический выход на телевизоре: что это
- История возникновения системы
- Основный принцип работы
- Преимущества оптического выхода
- Типы оптоволоконного кабеля
- Типовая конструкция оптоволоконного кабеля
- Сравнение с HDMI
- Итак, какой же тип подключения выбрать?
- Оптическое цифровое подключение
- Как выглядит оптический выход на телевизоре
- Параметры оптического кабеля для качественного соединения
- Как подключить кабель
- Все об оптоволоконных кабелях: варианты, конструкции, разъемы
- Конструкция кабеля
- Волоконные световоды
- Оптические разъемы
Как соединить оптико волоконный кабель?
Монтаж ВОЛС.
Оптические разъемы
Один из заключительных этапов монтажа ВОЛС — это разводка и подключение входящего оптоволоконного кабеля непосредственно в точке назначения: в серверной, дата-центре и т.д. Для этого кабель заводится в оптический кросс и волокна подсоединяются к разъемам. На этом этапе используется такая группа, как оптические компоненты — это патчкорды, пигтейлы, адаптеры (розетки) и всякого рода зажимы. Их также объединяют под названием пассивное оптоволоконное оборудование.
Пигтейл — это кусок оптического кабеля, оконцованный коннектором только с одной стороны.
Патчкорд имеет коннекторы на обоих концах, типы разъемов при этом могут отличаться (переходной патчкорд) или быть одинаковыми (соединительный).
Оптический адаптер — это, собственно, розетка, в которую подключается пигтейл или патч-корд.
Что важно учитывать?
Может показаться, что на стадии подключения коннектора в оптический адаптер нет ничего сложного. Как воткнуть вилку в розетку. Однако, нет.
Давайте посмотрим хотя бы с точки зрения технологии. Что представляет собой комплект — патчкорд/пигтейл + адаптер? Это стыковка двух оптических волокон, толщина которых примерно равна толщине человеческого волоса. При этом сдвиг соединения даже на 1 микрон вызывает потерю мощности.
То есть кроссовое соединение должно обеспечить:
- идеально точное соприкосновение сердечников (оптоволокна);
- защиту этого идеального соприкосновения от внешних влияний — сдвигов, возникновения воздушного зазора и т.п.;
- механическую защиту волокон при многократном соединении-разъединении;
- механическую защиту кабеля в коннекторе при изгибе, выдергивании и т.д.
В частности, именно поэтому создано столько типов оптических коннекторов. Каждый производитель стремился создать идеальный разъем именно под свое оборудование.
Но это еще не все сложности
Для обеспечения точного соединения наконечники оптических коннекторов не должны иметь трещин (если трещина пересекает оптоволокно, такой коннектор заменяется), не должны быть пыльными и грязными. Даже если вы просто прикоснулись к нему пальцем — след нужно тщательно вытереть спиртовой салфеткой. Каждая пылинка, загрязнение и т.д. — это ослабление, затухание сигнала, обратные отражения.
Поэтому оптические коннекторы регулярно протираются спиртом, а розетки — продуваются сжатым воздухом или очищаются специальными палочками.
На рисунке справа — наконечник коннектора после прикосновения пальца и после очистки.
Механическая прочность соединений обеспечивается в каждом типе разъемов по-разному, но в основном это:
- особо прочный материал наконечника коннектора — керамика, металлокерамика;
- защитные пластиковые и металлические колпачки над разъемами;
- защелки и фиксаторы положения как в оптических адаптерах, так и в «вилках»;
- кевларовые и другие армирующие нити под оболочкой отрезка кабеля, ведущего к разъему.
Виды оптических патчкордов, пигтейлов, адаптеров
Классификация оптических пигтейлов, патчкордов и адаптеров в целом одинакова и основана на следующих параметрах:
- стандарт коннектора (разъема);
- тип шлифовки;
- тип волокна — многомодовое или одномодовое;
- тип коннекторов — одинарный иди дуплекс.
В результате различных комбинаций всех этих типов получается огромное множество модификаций коннекторов и адаптеров. На этой картинке далеко не все:
Что означают все эти буквы?
Возьмем типичную маркировку оптического патчкорда. К примеру, SC/UPC-LC/UPC MultiMode Duplex.
- SC и LC — это типы коннекторов. Здесь мы имеем дело с патчкордом — переходником, так как два разных типа разъема;
- UPC — тип шлифовки;
- Multimode — вид волокна, здесь многомодовое волокно, еще может быть обозначено аббревиатурой MM. Одномодовое маркируется как SinglеMode или SM;
- Duplex — два разъема в одном корпусе, для более плотного расположения. Обратный случай — это Simplex, один коннектор.
Типы полировки (шлифовки) оптоволоконных разъемов
Шлифовка или полировка оптоволоконных разъемов призвана обеспечить идеально плотное соприкосновение сердечников оптоволокна. Между их поверхностями не должно быть воздуха, так как это ухудшает качество сигнала.
На данный момент используются такие типы полировки, как PC, SPC, UPC и APC.
PC — прародитель всех остальных видов полировки. Разъем, обработанный методом PC (в том числе вручную), представляет собой скругленный наконечник.
Обратите внимание, на рисунке видно, что соединение коннекторов с плоским торцом чревато возникновением воздушной прослойки. В то время как скругленные торцы соединяются более плотно.
Может применяться в сетях небольшой дальности, предполагающих небольшую скорость передачи данных.
SPC — улучшенный вариант PC, но шлифовка производится только машинным способом.
UPC — почти плоский (но не свосем) разъем, который производится с применением высокоточной обработки поверхности. Дает отличные показатели отражательной способности (по сравнению с PC и SPC), поэтому активно применяется в высокоскоростных оптических сетях.
Коннекторы с этим типом разъема чаще всего — синие.
APC — разъем, обработанный по совсем другому принципу: концы скошены под углом 8 градусов. Такая полировка поверхности дает самые лучшие результаты. Обратные отражения сигнала практически сразу покидают покидают оптоволокно, и благодаря этому снижаются потери.
Разъемы с полировкой APC применяются в сетях с высокоми требованиями к качеству сигнала: передача голосовых, видеоданных. Как пример — кабельное телевидение.
Коннекторы с этим типом разъема — зеленого цвета.
Внимание!
Коннекторы с шлифовкой APC не подходят к разъемам с другой полировкой (PC, SPC, UPC) и вызывают взаимное повреждение.
Полировки PC, SPC, UPC взаимно совместимы.
Сравнение формы наконечника и пути отраженного сигнала в разъемах с полировкой UPC и APC:
Зависимость потерь на линии от типа полировки оптического коннектора изложена в таблице:
Как видим, полировка UPC (скругленные торцы) и APC (скошенные торцы) — эффективнее всего. Поэтому патчкорды и пигтейлы с этим типом шлифовки чаще всего применяются.
Типы оптических разъемов
На практике наши монтажники оптоволоконных сетей в подавляющем большинстве случаев работают с типами FC, LC, SC. На более редких видах коннекторов мы пока останавливаться не будем.
FC
Старый, зарекомендовавший себя стандарт. Отличное качество соединения, особенно FC/UPC, FC/APC.
- подпружиненное соединение, за счет чего достигается «вдавливание» и плотный контакт;
- металлической колпачок — прочная защита;
- коннектор вкручивается в розетку, а значит, не может выскочить, даже если случайно дернуть;
- шевеление кабеля не влияет на соединение.
Однако плохо подходит для плотного расположения разъемов — необходимо пространство для вкручивания/выкручивания.
SC
Более дешевый и удобный, но менее надежный аналог FC. Легко соединяется (защелка), разъемы могут располагаться плотно.
Однако пластиковая оболочка может сломаться, да и на затухание сигнала и обратные отражения влияют даже прикосновения к коннектору.
В общем, используется наиболее часто, но не рекомендован на важных магистралях.
LC
Уменьшенный аналог SC. За счет малого размера применяется для кроссовых соединений в офисах, серверных и т.п. — внутри помещений, там где требуется высокая плотность расположения разъемов.
Автор разработки этого типа коннектора — ведущий производитель телекоммуникационного оборудования, Lucent Technologies (США) — изначально прогнозировал своему детищу судьбу лидера рынка. В принципе, так оно и есть. Особенно учитывая то, что этот тип разъема относится к соединениям с повышенной плотностью монтажа.
Как работает интернет по оптоволоконному кабелю
Сегодня многие люди в повседневной жизни пользуются интернетом. Существует немало различных вариантов подключения к глобальной сети. Однако наибольшей популярностью пользуется оптоволоконный кабель для интернета. Прежде чем им воспользоваться, необходимо ознакомиться с описанием его основных особенностей.
Оптоволоконный кабель обеспечивает высокоскоростное подключение к сети Internet
- Что такое оптоволоконный интернет и чем он отличается от обычного
- Описание технологии, конструкция кабеля
- Какие имеет ограничения
- Прокладка оптоволокна на местности
- В грунте
- Подвешивание на опорах
- Прокладка в канализации
- Внутри помещений
- Как происходит подключение к интернету через оптоволокно
- Монтаж оборудования и подключение модема
- Создание и настройки сети интернет и схема ввода
Что такое оптоволоконный интернет и чем он отличается от обычного
Оптоволокно — наиболее современная технология, с помощью которой удается организовать высокоскоростное соединение с сетью Internet. Стоит отметить, что сегодня большинство провайдеров предпочитают подключать именно оптоволоконный интернет.
Провод из оптоволокна обладает рядом достоинств, среди которых можно выделить следующее:
- Долговечность. Изготавливаются такие кабели из прочного материала и поэтому они надежно защищены от механических повреждений.
- Высокая пропускная способность. Максимальная скорость у оптоволокна составляет 100 Гбит в секунду. Этого достаточно для быстрого скачивания крупных файлов.
- Безопасность. Использование оптоволоконных сетей позволяет специальным программам быстро обнаруживать несанкционированный доступ к информации. Благодаря этому удается надежно защитить передаваемые данные от злоумышленников.
- Отсутствие помех. Именно из-за этого удается стабильно передавать данные на скорости 100 Гбит в секунду.
- Универсальность. Стоит отметить, что оптоволоконный кабель используется не только для проведения интернета, но и для организации системы видеонаблюдения.
Однако основное достоинство кабелей из оптоволокна заключается в том, что с их помощью можно соединять объекты, которые находятся друг от друга на больших расстояниях. Это возможно сделать благодаря тому, что у оптических кабелей для интернета не ограничена длина каналов. Такое отсутствие ограничений позволяет организовывать соединение между континентами. Стоит отметить, что все материки связаны между собой именно при помощи оптики. Кабель проложен по дну океана.
Дополнительная информация! Многих интересует, чем оптоволоконные интернет отличается от обычного. Основное отличие заключается в скорости передачи данных. Кабельная оптоволоконная сеть способна передавать информацию на скорости около 100 Гбит/с.
Описание технологии, конструкция кабеля
Людям, которые хотят подключить интернет по оптоволокну, следует детальнее ознакомиться с конструкцией оптического провода. На самом деле у него довольно простое устройство.
В центральной части располагается стекловолоконный световод диаметром около 7-8 мкм. Он покрыт специальной защитной оболочкой, сделанной из пластика. Она не только защищает световод от механических повреждений, но и обеспечивает внутреннее отражение света.
В процессе передачи данных свет не покидает пределы центральной жилы и не сталкивается с электромагнитными помехами. Именно поэтому такие кабели не нуждаются в дополнительном экранировании.
Надежная наружная оболочка провода защищает его от механических повреждений
Чтобы оптический интернет стабильно работал и не было обрывов связи, оптоволоконный провод делают максимально прочным. Для уплотнения используют кевлар и металл. Благодаря такому надежному бронированию, кабели из оптического волокна защищены от механических повреждений.
Оптические провода могут отличаться по своим конструкционным особенностям:
- Стеклянное волокно, размещенное внутри оболочки из пластика. Кабель такого типа менее надежный и не очень часто используется во время проведения интернета.
- Многослойный провод. Он изготавливается с дополнительными упрочняющими компонентами. Подходит для прокладки в грунте или под водой.
Есть и другая классификация, согласно которой оптику можно поделить на два основных типа:
- Одномодовый. Такие провода изготавливаются из световода диаметром в 1,3 мкм. Одномодовая оптика более качественная и чаще всего используется при подключении интернета в частных домах и квартирах.
- Многомодовый. От предыдущего типа провода отличается тем, что в нем используется не лазерный, а обычный световод. При этом длина световой волны довольно короткая и составляет всего 0,85 мкм.
Дополнительная информация! Многомодовые провода не подходят для прокладки сетей на большие расстояния. Их максимальная длина не должна превышать 5 км.
Какие имеет ограничения
Многих интересует, есть ли у стекловолокна для интернета какие-то ограничения. На самом деле оптические кабели далеко не идеальны и имеют свои недостатки.
Главный минус заключается в том, что они не могут обеспечивать идеальный сигнал. Например, большинство проводов оптического типа обеспечивают максимальную скорость передачи данных 10 Гбит/с только на расстоянии 100-200 км. После этого начинается постепенное затухание сигнала и соответственно ухудшение скорости. Однако пользователи сети Internet этого не замечают.
Дело в том, что оптику прокладывают только до многоквартирного дома. До квартир протягивается обычная витая пара. Это приводит к ограничению скорости. Поэтому, чтобы насладиться максимально быстрой передачей данных, придется проводить оптику напрямую в квартиру и подключать специальное оборудование для оптоволоконного интернета.
Прокладка оптоволокна на местности
Многих людей, которые хотят оптический интернет, интересуют особенности прокладки оптоволокна. На самом деле это довольно сложная работа, которая должна выполняться профессионалами. Выделяют четыре основных способа прокладки оптического кабеля на местности.
В грунте
Это наиболее распространенный способ, которым часто пользуется Ростелеком и другие популярные провайдеры.
Прежде чем уложить кабель, необходимо разработать схему. В ней детально планируется, как и где будет пролегать провод. Для укладки в грунте используются кабели с прочной наружной оболочкой. Она обеспечит дополнительную защиту от повышенной влажности и грызунов.
Чтобы провод не повредился, его могут помещать в специальной пластиковой трубе.
Размещение на опорах — наиболее простой способ прокладки оптики
Подвешивание на опорах
Бывают случаи, когда не удается проводить волокно для интернета в грунте. В подобных ситуациях кабель вешают на дополнительные опоры. Чаще всего данный способ используется при подключении к сети Internet дач или частных домов.
Для подвешивания используются провода с вмонтированным тросом, который в разрезе представлен в виде восьмерки. Также конструкция оснащается упрочняющими нитями. Они нужны для предотвращения растягиваний и провисаний.
Прокладка в канализации
Это наиболее подходящий вариант подключения оптико-волоконного интернета в городской местности. Провайдеры часто используют готовые канализационные каналы для проведения сетевых проводов. Для протяжки применяется кабельная лебедка или пруток.
Внутри помещений
Иногда оптоволокно приходится проводить в зданиях. Для этого используются облегченные кабели с эластичной оболочкой. Они прокладываются в заранее сделанных каналах. Если их нет, можно протянуть провод под плинтусами.
Дополнительная информация! Все вышеперечисленные методы прокладки оптоволокна отличаются стоимостью. Дороже всего проводить интернет-провод под землей. Для этого придется использовать технику для рытья траншеи. Проще и дешевле провести кабель по воздуху, прикрепляя его к опорам.
Как происходит подключение к интернету через оптоволокно
Чтобы провести стекловолокно интернет домой, необходимо выполнить такую последовательность действий:
- Обратиться к местному провайдеру. Для начала надо связаться с поставщиком интернет-услуг. Можно оставить заявку на официальном сайте провайдера, позвонить или лично посетить офис. В некоторых случаях сразу после обращения просят внести предоплату.
- Дождаться мастеров. В ближайшие дни должны приехать сотрудники, занимающиеся монтажом сетей. Они выполняют работы по проведению интернет-провода в квартиру.
- Сначала они рассверливают стену в прихожей, после чего через проделанное отверстие проводят оптоволокно от распределительного щитка. Когда провод будет проведен в квартиру, на нем устанавливают оптическую розетку.
Дополнительная информация! Чаще всего работы по проведению кабеля в квартиру длятся не дольше нескольких часов. Однако при появлении трудностей процедура может затянуться.
Монтаж оборудования и подключение модема
После того, как провод будет проведен в квартиру, необходимо заняться подключением модема. Эта работа выполняется не монтажниками, а наладчиками провайдера. Мастера приезжают со своим оптическим модемом. Его можно сразу приобрести или взять в аренду на время.
Модем соединяется с проводом, который идет из распределительного щитка. Затем при необходимости его подключают к маршрутизатору для организации беспроводной сети или подсоединяют напрямую к персональному компьютеру через Ethernet-разъем.
Создание и настройки сети интернет и схема ввода
Когда процесс подключения модема будет завершен, необходимо настроить сеть, чтобы она начала работать. Делается это в несколько последовательных этапов:
- Подключить модем к роутеру. Он подсоединяется через вход Ethernet.
- Настроить маршрутизатор. Чтобы войти в параметры устройства, необходимо в адресной строке браузера ввести IP 192.168.100.1. Затем надо указать логин и пароль. Чаще всего это «admin/admin».
- Проверить работу интернета. Если наладчики провайдера все настроили правильно, сеть должна заработать без проблем.
Использование оптоволокна — один из наиболее распространенных методов подключения к сети Internet. Люди, которые хотят провести себе высокоскоростной оптоволоконный интернет, должны ознакомиться с основными особенностями данного способа подключения.
Оптоволоконный кабель: плюсы и минусы
Оптоволоконный кабель: преимущества и недостатки
Еще каких-то лет десять назад мы и представить не могли, насколько сильно вырастет скорость домашнего интернета. Многие в то время, как и я, пользовались мобильным телефоном или же выходили в сеть через спутниковую тарелку.
Кстати, возможно кто-то помнит те времена, когда вовсю была популярна так называемая «спутниковая рыбалка». Если у вас была тарелка, компьютер и специальная программа Skynet, то можно было перехватывать нешифрованный спутниковый поток данных.
Однако это уже совсем другая история, о которой я поведаю в другой статье на сайте elektrikinfo.ru. В сегодняшней статье речь пойдёт про оптоволоконный кабель, его преимущества и недостатки. Так что если ваш интернет провайдер настойчиво хочет поменять старые медные провода на оптоволоконный кабель, то даже не сомневайтесь, соглашаться или нет. Конечно же, да, и вот почему.
Чем оптоволоконный кабель отличается от медного
В отличие от медного кабеля, где интернет передаётся путем электрических сигналов, в оптоволокне передача сигнала идёт благодаря световому излучению. Оптоволоконный кабель не имеет металлических жил. В нем, вместо них есть тонкие трубки, по которым сигнал трансформируется на трех длинных волнах: 1550 нм, 1310 нм и 850 нм.
То есть, как видно, разница ощутима, правда? Уже хотя бы в принципиально другой схеме передачи данных. Подробно вдаваться в технологию передачи данных по оптоволоконному кабелю я не буду, а уточню лишь все преимущества, которых существует очень большое количество.
Преимущество оптоволоконного кабеля
Итак, мы узнали, что интернет по оптоволоконному кабелю передаётся благодаря световому излучению. Вследствие этого увеличивается не только сама скорость интернета, которая может составлять 10 Гбит/сек и более, но и расстояние передачи данных. При помощи оптоволоконного кабеля можно передавать интернет на расстояние до 250 км.
Кроме этого оптоволоконный кабель имеет ряд других, очень важных преимуществ по сравнению с медным кабелем:
- Высокая пропускная способность независимо от количества подключённых абонентов;
- Большие расстояния передачи данных;
- Высокая безопасность передачи данных. Перехватить данные через оптоволокно очень сложно;
- Оптоволоконный кабель не имеет металлических частей внутри, поэтому он не является предметом внимания для тех, кто промышляет сбором цветных металлов;
- Оптоволокно имеет повышенную стойкость, как к атмосферным осадкам, так и к химическому влиянию.
Ну и самое, пожалуй, главное преимущество заключается в том, что интернету, который передаётся по оптоволокну, не страшна гроза. Сколько у вас уже сгорело роутеров и сетевых карт из-за того, что вы не вовремя выдернули кабель из компьютерного гнезда? Так вот, в случае с оптоволоконным кабелем ничего подобного не случится, поскольку он не проводит электрический сигнал.
Недостатки оптоволоконного кабеля
Настал тот самый черед поговорить о некоторых недостатках оптоволоконного кабеля. В первую очередь следует выделить особую сложность соединения. Если кабель поломался, что для него очень вредно, соединить его может только мастер со специальной паяльной станцией. Скрутки медных проводов, как можно было делать раньше, уже не прокатят.
Второй момент связан с тем, что оптоволоконный кабель нельзя ни в коем случае сгибать. Его можно свернуть в кольцо и скорость интернета никак не пострадает вследствие этого. Однако оптоволокно, как и обычную трубу, нельзя сгибать и ломать. Помните в начале статьи я рассказывал про маленькие трубки в оптоволоконном кабеле? Так вот, они легко ломаются, и кабель в данном месте придётся перепаивать.
Во всем же остальном, оптоволоконный кабель, как и интернет, передаваемый по нему, во всем переигрывает кабеля с медными жилами.
Оптический выход на телевизоре: что это
История возникновения системы
Ещё недавно оптоволоконный кабель не воспринимался как инструмент для качественной передачи звука. Известно, что на быструю передачу данных возможен только свет. Впервые оптические технологии были применены в фотофоне, разработанным Александром Беллом.
Оптическая телефонная связь доказала возможность передачи сигнала по воздуху, но сама идея изобретателя не прижилась. Наработки физика стали использоваться для общения между судами, но не более.
Широкое использование оптоволоконных технологий началось лишь в середине 20 века, а серьёзный прорыв, позволивший принести диджитал аудио аут в массы, случился в 1980 году с изобретением стекловолоконного провода, который был способен передавать световой сигнал.
Несмотря на то, что оптический вход отпраздновал 40-летие, он до сих пор считается лучшим по качеству передачи аналогового звука, с которым не могут сравниться «тюльпан», HDMI-кабель, появившиеся значительно позже.
Основный принцип работы
Оптический кабель, подключаемый в digital audio out, состоит из оболочки и сердцевины
Принятые стандарты для тв-входа, одинаковые для Samsung, LG, других производителей, заключаются в нескольких этапах транспортировки информации:
- генерация светового сигнала из электрического;
- его ретрансляция с выхода на вход без потери силы, искажений;
- приём входящим устройством сигнала;
- обратная трансформация сигнала в электрический.
Оптический кабель, подключаемый в digital audio out, состоит из оболочки и сердцевины. Внимание при производстве отводится сложности соединения коннекторов, при помощи которых можно подключить два устройства между собой.
Нарушение технологии существенно портит качество передаваемого звука, делая использование оптических соединений бесполезным. Именно поэтому, меломаны приобретают кабеля промышленной нарезки определённой длины.
Преимущества оптического выхода
Главное преимущество оптоволоконных линий пересылки аудиосигнала – это практически полное отсутствие искажения звука от электромагнитных полей, которые с избытком присутствуют в среде обитания человека. Здесь кабели с металлическими жилами-проводниками могут заметно проигрывать оптоволоконным системам в качественной передаче аудиосигнала. В результате акустическая система будет воспроизводить звук с искажением.
Кроме того, при использовании оптического канала передачи достигается полная гальваническая развязка между передающим и приемным устройствами. Это также положительно влияет на качество передачи аудиосигнала. Паразитные наводки по плохим шинам «земли» (Ground) – бич звуковой аппаратуры. Сами оптические системы не создают электромагнитные помехи.
Типы оптоволоконного кабеля
Для пересылки аудиосигнала по оптическому каналу звук вначале преобразуют в цифровую форму, затем с помощью светодиода или твердотельного лазера отправляют по оптическому аудио кабелю получателю сигнала – фотоприемнику.
Оптоволоконные проводники делятся на два основных вида:
- Мономодовый;
- Мультимодовый.
В мультимодовых световые потоки могут иметь разброс в длинах волн и траекториях, что на больших длинах проводников может приводить к искажениям сигнала. Светоизлучателями в таких каналах передачи звука являются светодиоды, недорогие и долговечные полупроводниковые приборы. Длина соединителей не превышает 5 метров. Диаметр центрального светопроводящего волокна – 62,5 мкм. Внешняя оболочка световода имеет размер 125 мкм.
К сведению. Основное достоинство мультимодового кабеля – относительная дешевизна, поэтому он получил широкое распространение.
В мономодовом проводнике лучи света движутся прямолинейно, затухание и искажение сигнала минимально. Диаметр светового волокна равен 1,3 мкм, длина волны сигнала – тоже 1,3 мкм. Такой соединитель может иметь большую длину, чем мультимодовый. Источником света в этом случае является полупроводниковый лазер, излучающий сигналы с жестко регламентированной длиной волны. Однако лазер – устройство более дорогое и менее долговечное, чем светодиод. В результате система становится более дорогой, чем мультимодовая, хотя и имеет лучшие параметры, в частности, длина проводника может составлять десятки метров.
Типовая конструкция оптоволоконного кабеля
Оптическое волокно может быть изготовлено из:
- Полимера;
- Кварцевого стекла.
Полимерное волокно, как правило, более стойкое к механическим воздействиям, более дешевое. Однако со временем может терять прозрачность, что отрицательно сказывается на долговечности изделия.
Стеклянные световоды имеют лучшие оптические характеристики, но более дороги и хрупки.
Сравнение с HDMI
Современные производители предоставляют широкий выбор при подключении звуковых устройств через домашний кинотеатр. В результате можно получить потрясающий результат.
Самым популярным методом на данный момент – соединение через HDMI кабель. Так можно передавать не только аудио, но и видеосигнал передается в высоком разрешении.
Когда на рынке появилось оборудование с таким интерфейсом, оптоволокно и его аудиовыход ушло на второй план, поскольку провод может передавать только аудиосигнал, и необходима отдельная коммутация для видеоизображения.
Но, несмотря на то, что стандарт соединения используется уже 30 лет, он актуален и по сей день. Оптический провод по-прежнему используют для коммутации до 7,1 каналов высокого разрешения аудио.
Провод применяют из-за использования привычных ресиверов, обладающих высоким качеством и оптическим входом на порту. Если человек любит хорошее звучание на телевизоре, ему не имеет смысла заменять эти устройства на новые. Стоит отметить, что в большинстве плееров или HDTV а также игровых консолях, всё ещё используют оптический порт.
При включении радиооборудования или телевизора, могут возникнуть помехи из-за плохого заземления или полного его отсутствия. В таких ситуациях начинается гул в акустической системе.
Нужно изолировать аппаратуру с помощью оптического провода. С этой задачей не может справиться привычный многим HDMI. Акустика с оптическим входом надежнее. Раньше таким способом подключали аппаратуру к музыкальному центру через оптический кабель.
Благодаря своим уникальным параметрам, качество звука между оптопроводом и HDMI очень хорошее.
Поэтому старый кабель для телевизора не потерял своей значимости и в современные дни. Можно легко подключать домашний кинотеатр к телевизору модели 2018 года. Качество изображения и звука будет очень высоким.
Итак, какой же тип подключения выбрать?
Ответ зависит от имеющейся у вас системы. Если необходимо сделать выбор строго между коаксиальным и оптическим подключениями, выбирайте первый вариант. По нашему опыту, коаксиальное подключение за счет большей детальности и повышенной динамики обычно обеспечивает более высокое качество звучания, чем оптическое.
Однако мы живем в эпоху, ориентированную на максимальное удобство. HDMI сегодня стал стандартом для любых аудио- и видеоустройств, и кажется разумным использовать именно его, если все компоненты системы им располагают.
Функциональность HDMI, пригодность к обновлению и возможность одновременной передачи аудио- и видеосигналов дают счастливую возможность забыть о нагромождениях кабелей вокруг устройств. А главное – при этом не придется жертвовать качеством.
Оптическое цифровое подключение
При оптическом цифровом подключении данные передаются по оптоволоконному кабелю (волокна которого могут быть изготовлены из пластмассы, стекла или кварца) посредством света. В таком случае шум из источника на контур ЦАП не переносится, как это может произойти с коаксиальным, поэтому его разумно использовать при подключении устройства напрямую к ЦАП саундбара или AV-ресивера.
Традиционно в системах ДК оптические кабели используются для передачи сжатого многоканального звука в форматах Dolby Digital и DTS. Те, что с разъемом Toslink (Toshiba Link), подключаются к соответствующим портам источника и AV-ресивера. Неплохим начальным вариантом будет кабель QED Performance Graphite Optical.
Многие производители перешли на HDMI в качестве основного типа разъемов, однако оптические выходы все еще регулярно встречаются у таких устройств, как игровые консоли, Blu-ray-проигрыватели, ТВ-приставки и телевизоры. Соответствующие входы можно обнаружить на стороне усилителя или ЦАП – например, в саундбарах или AV-ресиверах.
Как и в случае с коаксиальным подключением, одной из проблем оптического оказывается недостаток пропускной способности для передачи аудиоформатов без потерь – например, Dolby TrueHD или DTS-HD Master Audio, в которых записаны большинство саундтреков на Blu-ray-дисках. Кроме того, оптическое подключение не способно передавать сигналы более двух каналов несжатого потока в PCM. И, наконец, оптический кабель можно повредить, если слишком сильно согнуть его.
Как выглядит оптический выход на телевизоре
На телевизоре есть большое количество разъемов. Один из них – для передачи сигнала оптического. Этот порт легко узнать благодаря трапецевидной заглушки, которая подписана Optical Audio, Digital Audio Out, или Toslink.
При включении устройства, заработает индикатор с красным свечением вокруг порта чтобы пользователи знали, как подключить устройство. Поэтому подключение оптического кабеля телевизору – дело простое.
Параметры оптического кабеля для качественного соединения
Чтобы подключить к устройству оптический провод, при этом сохранив высокие показатели звука, нужно руководствоваться следующими правилами:
- Длина провод не должна превышать 10 метров. Самый оптимальный вариант – 5 метров. В таком случае качество передачи сигнала останется неизменным. Также некоторые производители выпускают тридцатиметровые кабели, которые передают сигнал без перебоя. Но качество будет зависеть от принимающего устройства.
- Чем толще кабель, тем дольше он прослужит.
- Самые качественные варианты дополнительно оснащают оболочкой, изготовленной из нейлоновой ткани.
- Важно обращать внимание на тип сердечника. Подходящие варианты – кремнеземные или стеклянные. Они значительно превышают пластиковые по качеству.
- Пропускная способность должна быть высокой. Хороший кабель имеет от 9 до 11 МГц. Такой показатель нужно выбирать, если дома установлена многоканальная звуковая система, со значительной частотой дискретизации.
Как подключить кабель
Само подключение акустики к телевизору, другой техники через оптический вход не должно вызвать сложностей, но существует ряд моментов.
Прямое подключение через разъем
Коммуникационный оптический порт, как правило, закрыт защитной крышкой, которая исключает попадание пыли. Достаточно слегка нажать на неё коннектором, и она откроется, осуществив подключение. Если сигнал не пошёл, стоит проверить в настройках активные аудиовыходы, а также уровень громкости на подключённых устройствах.
Подключение через приставку или конвертер
Часто система домашнего кинотеатра собиралась поэтапно, в разные годы. Встречаются ситуации, когда у ресивера нет оптического входа.
В таком случае, чтобы добиться идеального звучания, используя оптоволокно, потребуется покупка специальной приставки, позволяющей осуществить подключение через оптику.
В такой приставке присутствует два разъёма для оптического и коаксиального кабеля. Для подключения системы следует:
- вставить оптоволокно в выход телевизора, другого устройства;
- соединить кабель с разъёмом на приставке;
- через коаксиальный вход подключить аудиосистему.
Это простейший вариант преобразования аудиосигнала.
Продвинутым считается использование активного конвертера, превращающего цифровой сигнал формата 5.1 в аналоговый. Такой переходник обеспечивает ряд дополнительных опций, например, подключение других типов кабелей, наушников, игровой консоли.
Все об оптоволоконных кабелях: варианты, конструкции, разъемы
Первый шаг в разработке оптоволоконной системы — выбор передатчиков и приемников, наилучшим образом подходящих к заданному типу сигнала. Лучше всего это делать, сравнивая техническую информацию об изделиях и консультируясь с инженерами фирмы-изготовителя, которые помогут подобрать наилучший вариант. После этого надо выбрать сам оптоволоконный кабель, оптические соединители и метод их установки. Хотя это в самом деле не очень простая задача, часто не имеющие опыта инженеры испытывают неоправданную боязнь технологий работы с оптоволокном. В этой брошюре мы попытаемся прояснить несколько распространенных заблуждений об оптоволоконных кабелях и монтаже разъемов на них.
Конструкция кабеля
Как и медные провода, оптоволоконные кабели выпускаются во множестве различных вариантов. Существуют одно- и многожильные кабели, кабели для воздушной прокладки или непосредственной укладки в грунт, кабели в негорючей оболочке для прокладки в пространстве между фальшпотолком и перекрытием и в межэтажных кабельных каналах, и даже сверхпрочные тактические кабели военного назначения, способные выдерживать сильнейшие механические перегрузки. Понятно, что выбор кабеля определяется решаемой задачей.
Вне зависимости от вида внешней оболочки, в любом оптоволоконном кабеле имеется хотя бы один волоконный световод. Остальные конструктивные элементы (разные в разных типах кабеля) защищают световод от повреждений. Наиболее часто используются две схемы защиты тонких оптических волокон: с помощью неплотно облегающей трубки и с помощью плотно прилегающей оболочки.
В первом способе оптоволокно находится внутри пластмассовой защитной трубки, внутренний диаметр которой больше внешнего диаметра волокна. Иногда эту трубку заполняют силиконовым гелем, предотвращающим скопление влаги в ней. Поскольку оптоволокно свободно «плавает» в трубке, механические усилия, действующие на кабель снаружи, обычно его не достигают. Такой кабель очень устойчив к продольным воздействиям, возникающим при протяжке через кабельные каналы или при прокладке кабеля на опорах. Поскольку в световоде нет значительных механических напряжений, кабели такой конструкции имеют малые оптические потери.
Второй способ состоит в использовании толстого пластикового покрытия, нанесенного прямо на поверхность световода. Защищенный таким образом кабель имеет меньший диаметр и массу, большую устойчивость к ударным воздействиям и гибкость, но поскольку оптоволокно жестко зафиксировано внутри кабеля, его стойкость к растяжению не столь высока, как при использовании свободно облегающей защитной трубки. Такой кабель применяется там, где не предъявляются очень высокие требования к механическим параметрам, например, при прокладке внутри зданий или для соединения отдельных блоков аппаратуры. На рис. 1 схематично показано устройство обоих типов кабеля.
Рис. 1. Конструкция основных типов оптоволоконных кабелей
На рис. 2 показано поперечное сечение одно- и двухжильного оптоволоконного кабеля, а также более сложного многожильного. Двухжильный кабель внешне похож на обычный сетевой электропровод.
Во всех случаях световод с защитной трубкой сначала заключаются в слой синтетической (например, кевларовой) оплетки, определяющей прочность кабеля на растяжение, а затем все элементы помещаются во внешнюю защитную оболочку из поливинилхлорида или другого подобного материала. В многожильных кабелях часто добавляется дополнительный центральный усиливающий элемент. При изготовлении оптоволоконных кабелей используются, как правило, только не проводящие электрический ток материалы, но иногда добавляется внешняя навивка из стальной ленты для защиты от грызунов (кабель для непосредственной укладки в грунт) или внутренние усиливающие элементы из стальной проволоки (кабели для воздушных линий на опорах). Существуют также кабели с дополнительными медными жилами, по которым подается питание на удаленные электронные устройства, используемые в системе передачи сигнала.
Рис. 2. Различные типы кабелей в поперечном разрезе
Волоконные световоды
Независимо от разнообразия конструкций кабелей их основной элемент — оптическое волокно — существует лишь в двух основных модификациях: многомодовое (для передачи на расстояния примерно до 10 км) и одномодовое (для больших расстояний). Применяемое в телекоммуникациях оптоволокно обычно выпускается в двух типоразмерах, отличающихся диаметром сердцевины: 50 и 62,5 мкм. Внешний диаметр в обоих случаях составляет 125 мкм, для обоих типоразмеров используются одни и те же разъемы. Одномодовое оптоволокно выпускается только одного типоразмера: диаметр сердцевины 8-10 мкм, внешний диаметр 125 мкм. Разъемы для многомодовых и одномодовых световодов, несмотря на внешнее сходство, не взаимозаменяемы.
Рис. 3. Прохождение света через оптоволокно со ступенчатым и плавным профилем показателя преломления
На рис. 3 показано устройство двух типов оптоволокна — со ступенчатой и с плавной зависимостью показателя преломления от радиуса (профилем).
Волокно со ступенчатым профилем состоит из сердцевины из сверхчистого стекла, окруженной обычным стеклом с более высоким показателем преломления. При таком сочетании свет, распространяясь по волокну, непрерывно отражается от границы двух стекол, примерно как теннисный шарик, запущенный в трубу. В световоде с плавным профилем показателя преломления, который целиком изготовлен из сверхчистого стекла, свет распространяется не с резким, а с постепенным изменением направления, как в толстой линзе. В оптоволокне обоих типов свет надежно заперт и выходит из него только на дальнем конце.
Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света. На 850 нм (свет с такой длиной волны в основном применяется в системах передачи на небольшие расстояния) потери в обычном оптоволокне составляют 4-5 дБ на километр кабеля. На 1300 нм потери снижаются до 3 дБ/км, а на 1550 нм — до величины порядка 1 дБ. Свет с двумя последними длинами волн используется для передачи данных на большие расстояния.
Потери, о которых только что было сказано, не зависят от частоты передаваемого сигнала (скорости передачи данных). Однако существует еще одна причина потерь, которая зависит от частоты сигнала и связана с существованием множества путей распространения света в световоде. Рис. 4 поясняет механизм возникновения таких потерь в оптоволокне со ступенчатым профилем показателя преломления.
Рис. 4. Различные пути распространения света в оптоволокне
Луч, вошедший в оптоволокно почти параллельно его оси, проходит меньший путь, чем тот, который испытывает многократные отражения, поэтому свету для достижения дальнего конца световода требуется разное время. Из-за этого световые импульсы с малой длительностью нарастания и спада, обычно используемые для передачи данных, на выходе из оптоволокна размываются, что ограничивает максимальную частоту их следования. Влияние этого эффекта выражается в мегагерцах полосы пропускания кабеля на километр его длины. Стандартное волокно с диаметром сердцевины 62,5 мкм (многократно превышающим длину волны света) имеет максимальную частоту 160 МГц на 1 км на длине волны 850 нм и 500 МГц на 1 км при 1300 нм. Одномодовое волокно с более тонкой сердцевиной (8 мкм) обеспечивает максимальную частоту в тысячи мегагерц на 1 км. Однако для большинства низкочастотных систем максимальное расстояние передачи в основном ограничивается все же поглощением света, а не эффектом размывания импульсов.
Оптические разъемы
Поскольку свет передается только по очень тонкой сердцевине оптоволокна, важно очень точно совмещать его с излучателями в передатчиках, фотодетекторами в приемниках и световодами в оптических соединениях. Эта функция возлагается на оптические разъемы, которые изготавливаются с очень высокой точностью (допуски имеют порядок тысячных долей миллиметра).
Хотя существует много типов оптических разъемов, сейчас наиболее распространен разъем типа ST (рис. 5). Он состоит из изготовленного с высокой точностью штифта, в который выходит оптоволокно, пружинного механизма, который прижимает штифт к такому же штифту в ответной части разъема (или в электронно-оптическом устройстве) и кожуха, механически разгружающего кабель.
Разъемы ST выпускаются в вариантах для одномодового и многомодового оптоволокна. Основное различие между ними заключено в центральном штифте и его не так просто заметить визуально. Однако следует внимательно относиться к выбору варианта разъема: если одномодовые разъемы еще можно использовать с многомодовыми излучателями и детекторами, то разъемы для многомодового кабеля с одномодовым будут работать плохо или вообще приведут к неработоспособности системы.
Рис. 5. Оптический разъем типа ST
Установка оптического разъема на кабель начинается со снятия оболочки с помощью практически таких же инструментов, что используются для электрического кабеля. Затем усиливающие элементы обрезаются на нужную длину и вставляются в различные удерживающие уплотнения и втулки. В кабеле со свободно облегающей защитной трубкой ее конец снимается, чтобы обнажить само оптоволокно. В кабеле с плотно прилегающей к оптоволокну оболочкой она снимается с помощью прецизионного инструмента, напоминающего устройство для снятия изоляции с тонких электрических проводов. До этого момента процесс очень похож на работу с электрическим кабелем, но дальше начинаются отличия. Освобожденное от оболочек оптоволокно смазывается быстротвердеющей эпоксидной смолой и вставляется в прецизионно выполненное отверстие или канавку штифта, конец оптоволокна при этом выходит из отверстия наружу. Затем на разъеме устанавливаются элементы механической разгрузки кабеля, и он готов к завершающим операциям. Штифт помещается в специальное приспособление, в котором торчащий конец оптоволокна скалывается. На это уходит одна-две секунды, после чего разъем устанавливается в специальное зажимное приспособление, где выполняется полировка скола с помощью специальных пленок двух или трех степеней шероховатости. На все, не считая пяти минут на затвердевание эпоксидной смолы, уходит 5-10 минут в зависимости от мастерства монтажника.
Среди многих людей распространено предубеждение о трудностях установки разъемов на оптоволоконные кабели, поскольку они слышали «о сложном процессе скола и полировки стеклянного волокна». Когда им показывают, что этот «сложный процесс» выполняется с помощью очень простого приспособления и занимает меньше минуты, то окутывающая его «тайна» мгновенно улетучивается. Фактически, сборка оптического разъема ST — не более трудная задача, чем монтаж старого знакомого электрического разъема BNC. После обучения, которое занимает от 30 минут до часа, наибольшее время при установке оптических разъемов расходуется на ожидание затвердевания эпоксидной смолы. Тем не менее предубеждение остается широко распространенным, и для таких потребителей некоторые фирмы выпускают оптические разъемы так называемого быстрого монтажа. Они устанавливаются на кабели с помощью разнообразных механических зажимных систем, клеевых расплавов, быстросохнущих клеев (а иногда и вообще без химических клеящих составов). Некоторые из этих разъемов даже поставляются с заранее отполированным отрезком оптоволокна, вставленного в штифт, что вообще позволяет исключить процедуру окончательной обработки. Хотя установка этих разъемов действительно чуть более проста, никому не следует бояться и стандартного метода монтажа с использованием эпоксидной смолы и полировкой торца световода. На рис. 6 показана последовательность установки типового разъема ST на оптоволоконный кабель.
Рис. 6. Этапы монтажа разъема ST на оптоволоконный кабель
Также распространены оптические разъемы SMA, SC и FCPC. Все они подобны в смысле использования штифта, прецизионно совмещаемого с таким же штифтом в ответной части разъема, а отличаются только конструкцией механического соединения. Разъемы всех типов их изготовители снабжают простой пошаговой инструкцией по монтажу на оптоволоконный кабель.