Как соединить оптоволоконный кабель?

Как соединить оптоволоконный кабель в домашних условиях своими руками? Сегодня мы рассмотрим несколько способов, как именно это можно сделать.

Как соединить оптоволоконный кабель?

Как соединить оптоволоконный кабель своими руками так можно

Со скоростью света

Предполагаю, что многим читателям приходилось препарировать обычный сетевой кабель, и они знают, что он состоит из медных жил. Металл, в частности, медь передает информацию с устройства на устройство посредством электрических импульсов. Но электричество – лишь один из возможных переносчиков сигнала в компьютерных сетях, еще им бывают радиоволны и свет.

Для передачи светового импульса медь не годится, ему нужна прозрачная среда – светопроводящее волокно, которое и называют оптическим.

Оптоволокно или световод – это особая нитевидная структура из стеклянных или пластиковых материалов, которая проводит свет на большие расстояния. Скорость передачи по нему, в отличие от меди, практически безгранична!

Пучок таких волокон под одной оболочкой называют волоконно-оптическим кабелем, а сеть из них – волоконно-оптическими линиями связи или ВОЛС.

Оптоволокно: что оно собой представляет

Оптическое волокно состоит из прозрачного сердечника – среды передачи света, и оболочки (демпфера), которая препятствует затуханию импульса и обеспечивает его доставку до конечной точки.

Передающие среды, которые иначе называют ядрами оптических волокон, делают из кварцевого, халькогенидного и других видов стекол, а также из акриловых смол. Эти материалы характеризуются прочностью, гибкостью, высокой светопроницаемостью и низкой чувствительностью к перепадам температур и излучениям. Оболочки также состоят из стекла или пластика.

Толщина световодов, используемых в построении ВОЛС, составляет 125 мкм. При этом диаметр сердечника может быть разным – 7–62,5 мкм в зависимости от вида оптоволокна.

Виды и категории оптических волокон и кабелей. Одномод и многомод

По виду и назначению различают одномодовые и многомодовые оптические волокна (а также состоящие из них кабели).

  • Одномодовые оптоволоконные нити пропускают лишь 1 световой сигнал (одну моду). Диаметр их сердечника составляет 7-10 мкм (в коммуникационных системах – 9 мкм), а чем он уже, тем ниже дисперсия и меньше затухание луча. Пропускная способность одномодового кабеля ниже, чем многомодового, но он способен передавать данные на бОльшие расстояния.
  • Многомодовые волокна одновременно пропускают несколько сигналов. Их сердечники имеют в несколько раз большее сечение – 50-62,5 мкм, что создает условия для повышения уровня дисперсии и более быстрого затухания импульса. Кабели такого типа предназначены для относительно коротких расстояний.

Волоконно-оптические кабели, которые используют для построения компьютерных сетей, делятся на 7 классов:

  • OS1 – одномод с сердечником 9 мкм.
  • OS2 – широкополосный одномод с сердечником 9 мкм.
  • OM1 – многомод с сердечником 62,5 мкм.
  • OM2 – многомод с сердечником 50 мкм.
  • OM2 plus – могомод с сердечником 50 мкм для лазерных источников (улучшенный).
  • OM3 – высокоскоростной многомод с сердечником 50 мкм.
  • OM4 – оптимизированный многомод с сердечником 50 мкм.

Одномодовые кабели предназначены для межконтинентальных, межгосударственных, межгородских и внутригородских магистралей большой протяженности (обычно от 10 км), а также для связи удаленных узлов оборудования телекоммуникационных компаний и центров обработки данных. То есть их применяют там, где важна непрерывность (или минимальное количество соединений) и повышенная надежность линии.

Кабели такого типа стоят дешевле, чем многомодовые, но если учесть затраты на весь необходимый комплект оборудования, то системы на одномодовой передаче обходятся дороже.

Многомодовые кабели используют для подключения к сети рабочих станций и других конечных устройств внутри помещений, для связи между этажами и близко расположенными зданиями (до 550 м). Также ими оборудуют дополнительные линии связи в центрах обработки данных.

Для подключения к Интернету жителей многоэтажных домов чаще всего используют многомодовые кабели классов OM3 и OM4.

Волоконно-оптические кабели передают данные на расстояние до 40-100 км и поддерживают скорость до 100 Гбит/с. Но это лишь теоретически достижимые значения: на быстроту и качество связи влияет категория кабеля и оборудование, которое обрабатывает сигнал.

Какое оборудование купить для домашней оптоволоконной сети

Оборудование, через которое клиентские устройства получают доступ в Интернет по волоконно-оптической связи, обычно предоставляет провайдер. Но это, как правило, простейшие бюджетные девайсы с ограниченным набором возможностей. Если хотите что-нибудь быстрее, мощнее, функциональнее, приобретите его самостоятельно.

Для построения домашней сети из «разношерстных» устройств понадобится роутер (маршрутизатор) с портом подключения оптики SFP, SPF+, XPF, PON или GPON – так их обозначают на корпусе аппарата. В отличие от универсального RJ-45, оптоволоконные разъемы бывают нескольких типов (форм). Какой подойдет вам, лучше уточнить у провайдера, с которым вы планируете заключить договор. Самый распространенный называется SC/APC.

Однако тип разъема – не единственное различие между такими роутерами. Оптоволоконные порты имеют разную пропускную способность, и она должна быть указана в характеристиках аппарата.

Внутри маршрутизатора оптический сигнал преобразуется в электрический и радио, которые понимают подключаемые устройства – ПК, телефоны и прочее. Они получают сигнал через интерфейсы LAN (Ethernet) и Wi-Fi. От пропускной способности последних тоже зависит скорость работы сети.

Для максимального раскрытия потенциала оптоволоконной связи все сетевые интерфейсы маршрутизатора должны поддерживать современные скоростные стандарты. А именно:

  • SFP/ SPF+/XPF – не меньше, чем скорость провайдера согласно тарифному плану. Одни производители указывают здесь 2 значения – скорости приема и отдачи сигнала, другие – только наибольший.
  • LAN (Ethernet) – 1 Гбит/с.
  • Wi-Fi – 802.11b/g/n/ac. При поддержке этого стандарта теоретически достижимая скорость соединения для роутеров с 8-ю антеннами составляет 6,77 Гбит/с.

Ниже небольшой список моделей маршрутизаторов с поддержкой подключения к оптоволоконным линиям. Они различаются характеристиками и ценой.

  • TP-Link TX-VG1530
  • D-Link DPN-R5402C
  • ZyXEL PSG1282NV
  • D-Link DVG-N5402GF
  • ZyXEL PSG1282V
  • Keenetic Giga

Какой из них лучше? Тот, что больше отвечает вашим задачам и максимально приближен к параметрам вашей сети. Впрочем, при сходстве основных данных на первый план выходят дополнительные функции, а они здесь очень разные. Выбирайте и пользуйтесь.

Предыдущая
Интернет, Wi-Fi, локальные сетиЛучшие роутеры для дома: на какие параметры обратить внимание, рейтинг устройств (на начало 2019)

Оптоволокно vs витая пара: что выбрать для дома обновлено: Сентябрь 23, 2019 автором:

Так что же лучше оптика или медь

Нынче любой крупный и даже средний интернет-провайдер использует в ряде сегментов своих сетей оптоволокно. И наоборот: как бы провайдер не заманивал подключением к «самой быстрой системе нового поколения», отдельные участки его сетей – традиционный медный кабель. Просто правила им диктуют условия среды (где-то они больше подходят для меди, а где-то – для оптики) и экономическая целесообразность, а маркетинг – есть маркетинг.

К какому виду магистрали подключили ваш дом провайдеры «Медный всадник» и «Оптическая иллюзия», точно не скажет никто, поэтому будем считать, что их предложения различаются только способом подключения абонентов внутри квартир.

В таблице ниже сопоставлены свойства волоконной оптики и витой пары:

OM3 и ОМ4 – 100 Гбит/с

  • Оптоволоконная линия до 10-и раз быстрее и гораздо «дальнобойнее», чем витая пара, она не подвержена влиянию наводок электрического оборудования и силовых линий, долговечна и прочна, не горит, не теряет свойств от влаги, кислот и щелочей. Не допускает шпионских врезок и прослушивания путем индукционного подключения.
  • Волоконно-оптическую сеть легче замаскировать в интерьере, для нее не нужно монтировать широкие неэстетичные кабель-каналы.
  • Волоконная оптика – это хоть и гибкое, но стекло, а любое стекло может трескаться и крошиться. Поэтому монтаж и модернизация такой сети требует большой аккуратности. Если поврежденную витую пару можно разрезать и соединить простой скруткой, то для восстановления разорванной оптики нужен специальный сварочный аппарат и умение с ним обращаться. А иногда даже небольшое повреждение волоконно-оптической линии требует полной ее замены.
  • Главное преимущество витой пары – дешевизна и простота в обиходе. За подключение к Интернету посредством медного кабеля с вас, скорее всего, не возьмут никаких дополнительных денег, а за оптику придется заплатить, ведь она дорогая. Витую пару с универсальным коннектором можно сразу воткнуть в компьютер – и на нем появится Интернет. Для оптики снова придется раскошелиться на специальную розетку, модем (ONT-терминал или роутер), сетевые адаптеры. А это тоже недешево.

Чисто оптоволоконные сети внутри домов и квартир пока большая редкость, чаще всего их делают гибридными – частично оптическими, частично меднопроводными, частично беспроводными. Оптику обычно подводят только к модему, а конечные устройства – компьютеры, смартфоны, смарт ТВ и т. д. получают Интернет всё по той же витой паре или Wi-Fi, ведь они не оборудованием модулями декодирования светового сигнала. Значит, какие бы сверхскорости ни обещал вам провайдер, медленные сегменты сети сведут ее на нет.

Итак, ваш выбор «Медный всадник», если:

  • Вы не хотите переплачивать за то, чего, скорее всего, не получите. Если ваши устройства – потребители Интернет-трафика работают на устаревших протоколах Ethernet или Wi-Fi, то оптика не сделает их быстрее.
  • Вы часто переносите компьютер с места на место, у вас есть собака, которая любит жевать провода или маленькие дети, хватающие всё подряд. И в случае повреждения кабеля вам проще починить его своими руками, чем платить мастеру.

Вам лучше стать клиентом «Оптической иллюзии», если:

  • Вы за всё новое против всего старого. Волоконная оптика – это технология будущего, а значит, достойна инвестиций. И пусть она дружит не с каждым девайсом – скоро, надо ожидать, производители последних возьмутся за ум и оборудуют свои продукты поддержкой оптоволокна. Ведь потребители этого хотят и готовы вкладываться.
  • Финансы для вас – не проблема. У вас современная техника, которая поддерживает последние протоколы проводной и беспроводной связи, и вы готовы заставить ее «взять максимальную высоту».
  • Вам нужна скорость, и этим все сказано.
  • Безопасность сети в плане возможной утечки данных – ваше всё.

Схемы распайки оптоволокна

В схемах распайки оптоволокна все не так просто и логично, как нам бы хотелось. Во-первых, производители маркируют их по национальным стандартам (например, по американскому или по российскому) или еще хуже – по своим собственным. А общего международного стандарта не существует.

Во-вторых, многие схемы в интернете рисуют народные умельцы, которые вообще не придерживаются никаких стандартов типа ВОЛС ПТ-6.

С цветом пигтейлов и патчкордов разобраться достаточно легко. Их окрас в большинстве случаев будет зависеть от типа оптоволокна:

многомодовый – оранжевый (также может быть синим или черным в соответствии с американскими и японскими стандартами).

А у OPTI-CORE ™ все волоконно-оптические кабели вообще цвета морской волны (больше похож на насыщенный голубой, чем на бирюзовый, скажем).

По ГОСТ Р 53246-2008:

одномодовый – желтый или красный;

многомодовый – оранжевый, серый, голубой, зеленый.

Цветовой счет волокон

С окрасом оптических волокон в кабеле дело обстоит значительно хуже.

Многие российские производители маркируют двенадцать световодов так:

та же самая схема для наглядности:

«Оптен» маркирует так:

ЗАО «ОКС 01»

СОКК

FinMark по Belden (США)

Маркировка по по nkt (ФРГ)

R&M (Швейцария)

Как видим, систематизировать бессистемное не имеет смысла. Поэтому нужно внимательно читать документацию и изучать схемы.

Самый лучший вариант (если вам так повезет) – это просто сварить все волокна «цвет в цвет». Так будет выглядеть наша распайка идеальной прямой муфты:

Но даже здесь могут возникнуть проблемы. Дело в том, что производители иногда меняют по совершенно неведомой причине окрас волокон в модуле. Поэтому важно проверять и документировать сварку, чтобы не возникало проблем в дальнейшем.

Если в прямой муфте на два кабеля разное количество модулей и в модуле и отличается окрас волокон, то нужно распаивать их на две кассеты. Здесь уже по цветам ориентироваться не получится – для сварки каждого волокна нужно смотреть схему.

Она может быть такой:

Или любой другой – единого правила не существует.

Ответвительная тройная муфта по ВОЛС ПТ-6 выглядит так:

Более сложная ответвительная:

Здесь сначала лучше сварить прямые волокна, а затем те, которые идут на ответвление. Причем желательно разводить их по разным кассетам. И обязательно нужно подписывать. Иначе потом даже вы сами не разберетесь, что и где спаяно. А для другого пайщика это вообще будет совершенно неразгадываемый ребус-лабиринт.

Распайка оптоволокна – не столько сложная, сколько кропотливая работа. Здесь нужно быть предельно внимательным и аккуратным. И чем качественнее вы выполните работу – тем меньше будет вероятность ошибки. И проще будет обслуживать сеть.

Оставьте заявку и наш менеджер свяжется с Вами

Как соединить оптоволоконный кабель?

  • Главная
  • Общие вопросы
    • Для самых маленьких
    • Протоколы
  • Сетевое оборудование
    • Cisco
    • D-Link
    • MikroTik
    • Allied Telesis
    • Netgear
  • Операционные системы
    • Windows
    • Linux
  • Обзоры

четверг, января 17, 2013

Азы волоконно-оптических сетей

Конструкция оптического волокна
Конструкция оптического кабеля
Внешний вид SFP модулей
Коммутатор с разъемами для установки SFP модулей
Установка SFP модулей
Внешний вид оптического патч-корда
Внешний вид оптического кроса

Принцип действия оптического кросса
Соединение двух удаленных площадок при помощи волоконно-оптической сети

38 коммент.:

Спасибо за статью, было крайне познавательно.
Меня интеесует такой вопрос, читал в других источниках, но не смог разобраться, при прокладке внутри здания кабеля, возникает необходимость поворотов(от сервера до ролтера, от ролтера до конечного пользователя), так вот советывают использовать промежуточный пункт протягивания, при изменении направлении кабеля на 90 градусов после третьего раза. Я не могу понять что есть промежуточный пункт протягивания, и есть ли его необходимость при протяговании в зданиях, на расстояние к примеру 20 метрах от сервера до роултера?

Гм. не скажу что сильно разбираюсь в вопросах протяжки кабеля. Но обычно делают так. Грубо говоря от серверов до коммутатора серверной фермы прокладывают медью, дабы ее на такие короткие расстояния обычно вполне хватает. Гнуть ее можно как хочешь (конечно в разумных пределах). А вот для связи коммутаторов уже можно прокладывать оптику. Оптику нужно прокладывать аккуратно, при повороте на 90 градусов не нужно делать прямые углы, а необходимо огибать угол по дуге с радиусом больше минимального радиуса изгиба оптического волокна. Надеюсь вы это именно и имели ввиду. Если хотите скиньте ссылочку на ту статью что вы читали, попробую разобраться.

А зачем необходим оптический кросс, можно ли обойтись без него, если например на другой стороне находится один ПК с сетевой картой с разъемом SFP?

В теории можно. Но на практике так никто обычно не делает, так как это вызовет много проблем. Обычно Оптическая линия строится по следующей упрощенной схеме: Оборудование 1 <> Оптический патчкорд 1 <> Оптический кросс 1 <> Оптический кабель <> Оптический кросс 2 <> оптический патчкорд 2 <> Оборудование 2.

Волокна оптического кабеля «развариваются» на входах оптического кросса, и необходимость в изменение их положения и повторной «сварке» возникает не часто. А вот необходимость перекоммутации вашего оборудования с одного оптического волокна на другое может возникать на много чаще. Для упрощения этой задачи и используется оптический кросс.

Чтобы было понятнее приведу пример. Пусть у нас есть оптический кабель содержащий 8 оптических волокон. Для связи двух коммутаторов мы используем 2 волокна. Пусть в результате аварии одно из волокон было повреждено. В случае если мы используем оптические кроссы на обоих концах оптического кабеля, нам достаточно переткнуть на обоих сторонах оптической линии патчкорды, идущие от оборудования, из одного разъема оптического кросса в другой. В случае же если вы умудрились не использовать оптический кросс, то для того чтобы перейти на резервное волокно вам потребуется заново разваривать ОК.

Все вышесказанное относится к организации связи на большие расстояния.

Если же вы хотите соединить устройства находящиеся близко друг от друга, то в кроссе нет необходимости, можете просто соединить устройства напрямую оптическими патчкордами.

Большое спасибо за ответ.

a mozhno vopros?

Подскажите нормальный ли это вариант, из серверной идет один кабель (24 волокна) доходит до оптического кросса, где разваривается на несколько оптических кабелей по 8 волокон, а оставшиеся к разъемам кросса для подключения оборудования?

Немного не понял схему:
Вы имели ввиду «Оборудование»<>«Кросс в серверной»<>«Несколько ОК».
Если так то это совершенно нормальный вариант. Если вы имели ввиду что то другое то главное чтобы:
1)Выбранный вами вариант работал.
2)Удовлетворял по параметрам на затухания и т.д.
3)Был вам удобен.

Шкаф 1 в серверной из него выходит два кабеля по 24 волокна — заходит в шкаф 2 в кросс.
Кроссе в шкафу 2 он разваривается на 5 кабелей по 8 волокон которые идут в шкаф 3, шкаф 4, шкаф 5, шкаф 6, шкаф 7.
Или же лучший вариант из каждого шкафа по одному кабелю (8 волокон) вести сразу в серверную?

Если вы не планируете отводить в кроссе волокна в другие направления, то мне кажется лучше сразу вести от всех шкафов в серверную.

Здравствуйте, подскажите пожалуйста, если прокладываем оптику 16 волокон на 16 домов, каждый дом на своем волокне , то обязательно в каждом доме делать разводку в кросс? или можно просто на каждый дом отвести свое волокно, при этом остальные 15 не трогать, на доме где они не нужны. Я так понимаю , что и на каждый дом по модулю нужно ставить, получается , что в северной будет 16 модулей с одного района к примеру? а если 100 домов, то 100 модулей получается ? или другая система ?

Тут возникает несколько встречных вопросов:
1)А вы уверены что вам нужно по одному волокну на дом? Во первых не все системы работают по одному волокну, многие системы передачи работают по двум волокнам (одно под передачу другое под прием). Во вторых оптика штука хрупкая, так что нужно закладывать какой то резерв. Намного дешевле заложить дополнительные волокна сразу, чем выполнять строительство новой линии в случае обрыва (естественно это в основном касается больших многоэтажных домов, а не котеджей частного сектора, там и по одному волокну прокатит).
2)Исходя из пункта 1. если вы хотите заводить по Y волокон на каждый дом то для этих целей вам понадобится преобрести минимум Y волоконный кабель (такие кабели для внешний прокладки если я не ошибаюсь содержат минимум 4 волокна) , ведь не будите же вы вести голые хрупкие волокна от одного дома к другому.Как следствие раз вы ведете в каждый дом по несколько волокон, то чтобы их оконечить, то в доме желательно поставить оптический кросс и сразу разварить волокна на него (опять же актуально в случае больших домов, котеджей не касается).
3)Схемы разводки волокон могут быть различными и зависят от применяемых технологий:
3.1 При FTTH от серверной до каждого дома идет свой оптический кабель с нужным числом волокон (очень дорогой вариант).
3.2 При FTTH от кросса серверной до кросса первого дома идет кабель на 16*Y волокон, в кроссе первого дома вы отводите Y волокон, а 15Y волокон пускаете на следующий дом и так далее. То есть дома получаются связанными по цепочке. Аналогичный вариант можно сделать и без кроссов с отводом волокон на муфтах (Удачная схема по ссылке http://hkar.ru/iZBM).
3.3 При PON ведете одно волокно (в составе кабеля) и ветвите его.
4)Если вы ведете в частный сектор и все таки по одному волокну то у абонента обычно ставятся оптическая абонентская розетка (хорошая статья http://telekomza.ru/2012/09/14/osvaivaem-chastnyj-sektor-po-texnologii-ftth-chast-2/), но при желание не кто не мешает вам поставить и кросс. В случае больших домов лучше все таки поставить кроссы.

5)По поводу оборудования (модулей) опять же зависит от применяемой технологии. В случае PON это одно, в случае FTTx другое. C PON не знаком, так что промолчу. В FTTH(x) на стороне серверной в зависимости от ваших возможностей ставите: отдельные медиаконвертеры, шасси медиаконвертеров, коммутаторы с оптическими интерфейсами. На стороне абонента медиаконвертеры.

Могу где то сильно ошибаться, так что прошу сильно не пинать, и по возможности указать на ошибки.

Варим оптоволокно в домашних условиях — dert — LiveJournal

Oct. 18th, 2009

12:15 am — Варим оптоволокно в домашних условиях

Сегодня будет научно-познавательный пост 🙂

Эти цветные проводочки есть ни что иное, как оптоволокно, уложенное в кассету муфты. Наверняка многие слышали фразу «сварка оптоволокна», которая неизменно сопровождает крупные аварии на линиях связи. Но я уверен, что мало кто представляет себе этот увлекательный процесс. До недавнего времени я тоже был в их числе, но сегодня готов поделиться тайным знанием.

К счастью, в этот раз была не авария, а плановые работы, поэтому процесс проходил, можно сказать, в тепличных условиях.

Обычно оптический кабель разваривается на специальный кросс, каждое волокно на свой порт, откуда уже коммутируется с оборудованием или другим кроссом. Но в этот раз надо было сварить между собой два кабеля в обход оптических кроссов. Процесс, в общем-то, схож со сваркой кабеля при разрыве, за тем исключением, что кабель не надо сначала вытаскивать из кросса.

Вот так выглядят два рабочих оптических кросса, от которых надо будет избавиться и состыковать кабели напрямую. Сейчас пока данные бегают по желтым патч-кордам между кроссами.

Оптический кросс изнутри. Аккуратно распутываем и вытаскиваем кабель из кассеты.

Цветные проводки — это оптоволокно из кабеля, только пока в изоляции. Само оптоволокно бесцветное, а изоляцию специально делают цветной, чтобы различать волокна.

Волокон в кабеле может быть много. Может быть и 4, и 12, и 38. Как правило, для передачи данных используется пара волокон, по одному волокну в каждом направлении. По такой одной паре может передаваться от 155 Мбит/с до нескольких десятков Гбит/c, в зависимости от оборудования на концах волоконно-оптической трассы.

В этом кабеле 12 волокон, которые упакованы по 4 штуки в 3 цветных (белый, зеленый, рыжий) модуля.

Поскольку место сварки волокна — потенциально ломкая зона, эту часть кабеля упаковывают в оптическую муфту. Перед сваркой кабели заводят в муфту через специальные отверстия.

Теперь можно приступить к процессу сварки. Сначала с волокна при помощи точных инструментов снимается изоляция, и обнажается сам оптоволоконный стержень.

Перед сваркой нужно, чтобы торец волокна был максимально ровным, т.е. необходим очень точный перпендикулярный срез. Для этого есть специальная машинка.

Чик! Угол скола должен отклоняться от плоскости не более, чем на 1 градус. Обычные значения — от 0,1 до 0,3 градуса.

Обрезки чистого волокна тут же прибираются. На столе его фиг потом найдешь, а под кожу оно запросто может впиться, там обломиться и остаться.

А вот и самый главный аппарат в этом процессе — сварочник. Оба волокна укладываются в специальные пазы в середине аппарата с двух сторон (на картинке — голубого цвета), и фиксируются зажимами.

После этого самое сложное. Нажимаем кнопку «SET» и смотрим на экранчик. Аппарат сам позиционирует волокна, выравнивает их, кратковменной электрической дугой мгновенно спаивает волокна и показывает результат. Весь процесс происходит быстрее, чем я написал эти три предложения выше, и занимает секунд 10.

На волокно одевается термоусадочная трубочка с металлическим стержнем, чтобы укрепить место сварки, и волокно помещается в печку в том же самом аппарате, только уже в верхней его части.

Каждое волокно затем аккуратно укладывается в кассету муфты. Творческий процесс.

Для герметизации места ввода кабеля в муфту одеваются термоусадочные трубки, которые обрабатываются специальным феном. Трубка от высокой температуры сжимается, препятствуя доступу воды и воздуха в муфту.

И последний штрих. На муфту одевается колпак и фиксируется специальными застежками. Теперь не страшна ни влажность, ни жара, ни мороз. Такие муфты могут годами плавать в болоте без ущерба для кабеля внутри.

Весь процесс сварки двух 12-волоконных кабелей вместе занимает около полутора часов.

Ну вот, теперь вы знаете все тонкости этого процесса, можно смело покупать аппарат для сварки и опутывать оптоволоконными сетями все, что вам вздумается.

Подключение оптоволокна к коммутаторам BSP

Для введения оптического сигнала в оптический кабель (и соответственно его приема на другой стороне кабеля) служат специальные оптические приемопередатчики, которые на практике обычно встраиваются в SFP модули, предназначенные для установки в самые различные сетевые устройства, или же непосредственно в оптические порты устройств.

Рассмотрим, как происходит непосредственное соединение нескольких сетевых устройств при помощи волоконной оптики. Пусть у нас есть два коммутатора с разъемами для подключения SFP модулей (если нет коммутатора с разъемами для установки SFP модулей то можно использовать схему коммутатор — медиаконвертер).

В SFP порты коммутатора устанавливаются SFP модули.

К разъемам, установленных SFP модулей, подключаются оптические патч-корды (фактически тоже оптический кабель, но содержащий только 1 или 2 волокна и имеющий более простую конструкцию), другим концом оптические патч-корды подключаются к разъемам оптического кросса. Оптические патч-корды могут иметь различные оптические коннекторы на своих концах, выбор конкретной модели (с определенными коннекторами) определяется оптическими разъемами SFP модулей и разъемами оптического кросса.

Оптический кросс грубо говоря представляет из себя металлическую коробку с разъемами, к которым снаружи подключаются оптические патч-корды, а внутри пигтейлы (в общем то половинка оптического патч-корда, применяемая для оконцовывания магистрального оптического кабеля). Так же внутри оптического кросса расположены специальные кассеты и устройства для фиксации кабелей.

С другой стороны в оптический кросс заходит магистральный оптический кабель, который будет соединять две удалённые площадки.

Если собрать всю схему воедино, то она будет иметь следующий вид: