- Как соединить светодиоды в цепь?
- Maksollo › Блог › Маленький ликбез любителям пересветки, часть 2
- Особенности параллельного и последовательного соединений светодиодов
- Принципы подключения
- Полярность
- Способы подключения
- Подключение к напряжению 220 В
- Подключение к сети 12 в
- Последовательное подключение
- Преимущества и недостатки
- Параллельное подключение
- Плюсы и минусы
- Смешанное подключение
- Как подключить мощный светодиод
- Распространенные ошибки при подключении
- Основные выводы
- Правильное подключение светодиодов
- Распиновка светодиода
- Простейшая схема подключения светодиода
- Расчёт ограничительного резистора
- Включение светодиодов от блока питания
- Последовательное подключение
- Параллельное подключение
- Смешанное включение
- Включение в сеть переменного тока
- Подключение мигающих и многоцветных светодиодов
- Подробно о методах подключения светодиодов
- Немного теории
- Распиновка светодиода
- Схема включения светодиода
- Последовательное соединение
- Параллельное соединение
- Смешанное
- Подключение светоизлучающего диода к сети 220 В
- Как запитать диоды от блока питания
- Особенности подключения RGB и COB светодиодов
- Подключение светодиодов типа COB
- Светодиоды: виды и схема подключения
- Содержание статьи
- Устройство светодиода
- Как работает светодиод?
- Виды и основные параметры светодиодов
- Применение светодиодов
- Основные правила подключения светодиодов
- Основные характеристики светодиодов
- Способы подключения
- Как подключить светодиоды к сети переменного тока 220 В через блок питания
- Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение
Как соединить светодиоды в цепь?
Maksollo › Блог › Маленький ликбез любителям пересветки, часть 2
И снова всем привет!
Как и обещал, в этот раз я в двух словах расскажу о правилах включения светодиодов в электрическую цепь, о расчете режима работы светодиодов, выборе токоограничительных резисторов для них, а также о расшифровке цветового кода выводных резисторов.
О питании светодиодов в интернете информации масса, но, к сожалению, многие авторы собственных конструкций часто допускают ошибки, главная из которых допускается при включении в общую цепь нескольких светодиодов одновременно. Для начала разберем включение одного светодиода для работы от напряжения 12В, но перед этим определимся в терминологии.
Как я успел заметить, народ часто путает последовательное и параллельное соединение каких-либо элементов электрической цепи. Рассмотрим, ху из ху.
1. Последовательное соединение
Последовательно — это цепочкой, друг за другом, когда один вывод предыдущей детали соединен только с одним выводом следующей. Наглядный пример — хоровод:)
Главные особенности такого соединения:
— в случае с лампочками или светодиодами, они должны быть одинаковыми, рассчитанными на одно и то же напряжение и ток, иначе одни из них гореть не будут, а другие станут гореть слишком ярко, вплоть до перегорания;
— сумма напряжений, на которые рассчитана каждая лампочка, должна быть равна (в идеале) или примерно равна (на практике) напряжению батареи. Или же, с другой стороны, на каждой лампочке будет напряжение, равное напряжению батареи, деленному на число лампочек. Или же с третьей стороны: сумма напряжений на всех элементах последовательной цепи равна напряжению питания;
— в любом участке цепи будет протекать один и тот же ток;
— при перегорании любой лампочки погаснут все сразу, потому как цепь разорвется.
2. Параллельное соединение — все элементы цепи соединены так, что из двух выводов одни соединяются в один проводник, другие в другой. Наглядный пример — девушка и молодой человек держат друг друга за руки, стоя лицом к лицу:))) Ну, или дети, играющие в «паровозик».
Главные особенности:
— лампочки могут быть разной мощности, на разные токи, но на одинаковое напряжение, равное (в идеале) или примерно равное (на практике) напряжению батареи;
— на любом элементе будет одно и то же напряжение;
— ток, потребляемый от батареи равен сумме токов всех лампочек;
— при перегорании любой лампочки остальные продолжат гореть.
Есть еще и третий вариант соединения — соединение смешанное, когда несколько последовательных цепей соединены параллельно и наоборот.
В таком соединении каждый тип цепи имеет те же главные особенности, что и по отдельности. Кстати, если присмотреться, то цепь, показанная на рисунке 1, тоже является примером смешанного соединения: последовательная цепь лампочек подключена параллельно батарее:)))
Переходим к главному — к светодиодам. Лампочки в подсветке, например, приборной панели VDO 2110, соединены параллельно, каждая лампа рассчитана на напряжение 12В (для лампочки ее рабочее напряжение — определяющий параметр, мощность и число их зависит только от мощности источника питания) и может подключаться к питанию напрямую. Со светодиодом все иначе. При работе светодиода в расчетном, штатном режиме напряжение на нем обычно равно 3…3,3В, но определяющим параметром для него является не напряжение, а ток. Свойства полупроводника таково, что при плавном подъеме напряжения на нем, скажем, с помощью реостата регулировки подсветки, оно начинает расти от нуля до определенной величины (для светодиода это упомянутые 3…3,3В), после чего напряжение остается практически неизменным, дальше растет только ток. И когда он превысит некоторую величину, светодиод перегорает. Если подать на светодиод напряжение прямо с аккумулятора, оно-таки будет составлять 12 вольт, но срок жизни диода будет определяться секундами, если не долями секунд.
Чтобы светодиод стал работать от 12В, необходимо ограничить его ток, чтобы он не превышал максимально допустимого для светодиода значения. Это можно сделать несколькими способами: с помощью токоограничивающего резистора, стабилизатора тока, широтно-импульсной модуляции. Так как все это я пишу в расчете на начинающих, два последних способа мы опустим — тем, кто «в танке», это все уже не нужно — и рассмотрим метод расчета токоограничивающего резистора.
Для того, чтобы уменьшить, ограничить ток в цепи светодиода, нам нужно увеличить сопротивление этой цепи. Вспоминаем закон господина Ома:
где: I — ток, U — напряжение, R — сопротивление
Напряжение у нас всегда одно — 12В. Кто-то возразит — не 12, а 14,4В. Скажем, так: напряжение у нас всегда равно напряжению бортовой сети автомобиля, но чтобы уберечь светодиоды от выхода из строя, все расчеты будем делать для максимального напряжения — 14,4В. Так вот, напряжение у нас всегда одно и то же — 14,4В. Номинальный ток современных светодиодов обычно составляет 10…20 мА. Это (как, впрочем, и рабочее прямое падение напряжения на светодиоде — 3…3,3В величина, усредненная для основной массы белых-синих-красных-зеленых-RGB светодиодов в SMD исполнении) лучше уточнить по даташиту, если известен тип светодиода. Если же тип неизвестен, лучше принять значение 10 мА — светить будет послабее, зато точно не сгорит от перегрузки по току.
Чтобы увеличить сопротивление цепи светодиода, последовательно с ним включается токоограничивающий резистор:
Для определения его номинала узнаем, сколько вольт должно упасть на резисторе. Вспоминаем правило последовательной цепи: сумма напряжений на всех элементах равна напряжению питания. Питание у нас 14,4В. Номинальное напряжение на светодиоде — 3,3В.
14,4В — 3,3В = 11,1В
Именно такое напряжение должно быть на резисторе — 11,1В. Ток, протекающий в цепи (в том числе, и через светодиод) равен 10…20 мА. Например, для SMD-светодиода типоразмера 3528 номинальный ток равен обычно 20 мА, но для пущей сохранности возьмем немного меньше — 15мА. Выведем сопротивление из формулы закона Ома:
Напряжение на резисторе мы посчитали — 11,1В, ток через светодиод, а следовательно, и через резистор, мы выбрали — 15мА. Сопротивление резистора R = 11,1В / 15мА = 0,74 кОм. Вообще, если делать все по всем правилам, ток должен быть задан в амперах, при этом значение сопротивления получится в омах: 11,1В / 0,015А = 740 Ом. Что, по сути, то же самое:) Ближайший стандартный номинал к рассчитанной величине — 750 Ом. Расчет закончен.
Полезно бывает посчитать мощность резистора для уверенности, что он выдержит. Для этого нужно ток через резистор (на этот раз удобнее уже в амперах:) ) умножить на напряжение на нем: 11,1В * 0,015А = 0,17 Вт (округленно). Теперь расчет совсем закончен — чтобы запитать один светодиод, нам нужен резистор мощностью 0,25 Вт (ближайшее вверх стандартное значение) сопротивлением 750 Ом.
Для удобства сведу все в одну кучу, пусть шпаргалка будет:
Вместо резистора в цепь можно включить стабилизатор тока, простых схем сейчас много в сети. Может быть, когда-нибудь руки дойдут до их описания.
Чаще всего при пересветке всяческих панелей (приборных, печек и т.п.) светодиоды объединяют в группы (обычно по три, реже — по два), при этом экономятся резисторы. И вот тут самое главное правило: светодиоды в группе необходимо соединять только последовательно!
Почему? Все просто. В последовательной цепи через все элементы течет один и тот же ток, который мы можем точно определить и задать с помощью резистора. В параллельной же мы можем задать только общий ток всей цепи, он будет равен сумме токов через светодиоды. Идеального на свете ничего нет, светодиоды тоже имеют разброс параметров: одни потребляют меньший ток, другие больший и может получиться так, что при токе через три «неправильных» светодиода 45 мА (по 15 мА на каждого — вроде справедливо, правда?), но сильном разбросе их параметров на два из диодов может прийтись по 10 мА, а вот третьему достанутся оставшиеся 25, он обидится один раз — и все. А в сумме получатся те же 45 мА.
Так что вот оно, самое железное правило: несколько светодиодов с одним резистором — только последовательно. А вот эти группы между собой соединяем уже параллельно, потому как каждая из них будет рассчитана на 14,4В.
Расчет для группы из двух-трех диодов ничем не отличается от приведенного, только при расчете напряжения на резисторе из напряжения питания нужно вычитать сумму напряжений всех светодиодов в группе (6,6В — для двух, 9,9 — для трех). Сопротивление и мощность вычисляются одинаково.
На этом, собственно, все:)
Ну и напоследок, обещанная таблица цветовой кодировки резисторов и онлайн-сервис для ее расшифровки.
Спасибо за внимание! Всем правильных схем и хорошего настроения:) До новых встреч в эфире!
Особенности параллельного и последовательного соединений светодиодов
Соединение светодиодов – несложная процедура даже для человека без профессиональных навыков.
Соединение в LED цепочку компонентов может быть нескольких видов – последовательное и параллельное.
Эти схемы могут выполняться в различных вариациях, каждая из которых имеет свои положительные и отрицательные стороны.
Принципы подключения
Светоизлучающие диоды активно применяются в подсветке, индикации. Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов.
К основным способам подключения относятся:
- параллельное;
- последовательное;
- комбинированное.
Основные причины выхода из строя светодиодных цепочек:
- неправильное соединение;
- некачественные диоды или блоки питания.
Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока. При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток.
Важно! Любой компонент имеет техдокументацию, в которой указывается полярность. Ее узнать можно по маркировке компонента или визуально.
Полярность
Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.
Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.
При помощи тестера. Для этого нужно взять мультиметр, перевести его в положение «Прозвонка» и прикладывать щупы к электродам. Когда красный щуп коснется анода, а черный катода – светодиод загорится. Если при перестановке на шкале высвечивается и не меняется «бесконечное» сопротивление, есть неполадка с элементом. Так что мультитестер используется и для проверки работоспособности излучающих приборов.
Визуальный осмотр. Можно посмотреть внутрь колбы. Широкая часть – это катод, а узкая – анод. Мощные светодиоды сверхъяркого типа имеют маркировку выводов «+» и «–». Компоненты для поверхностного монтажа обычно имеют специальный скос, который указывает на катод.
Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.
По технической документации. В паспорте прибора будет написано, какая полярность.
После определения плюса и минуса электродов нужно разобраться с методом подсоединения.
Способы подключения
Этапы соединения:
- определение полярности;
- составление схемы подключения;
- подбор драйвера и блока питания;
- расчет резистора;
- сбор цепи;
- тестирование подключенной системы.
Можно выделить 2 метода соединения – к электросети 220 Вольт и 12 Вольт. Осуществить подключение можно последовательно или параллельно. Наилучшим способом считается последовательное соединение светодиодов.
Подключение к напряжению 220 В
Чтобы светодиод загорелся, через него должен проходить ток в 20 мА и выше, а падение напряжения не должно превышать 2,2 – 3 В в зависимости от материалов кристалла. С учетом указанных параметров выбирается токоограничивающий резистор по закону Ома. Его формула:
R=(Uпит-Uпад)/(I*0,75), где R – номинал резистора, Uпит – напряжение источника, Uпад – падение на диоде, I – номинальный ток, 0,75 – коэффициент надежности.
Падением напряжения называют уровень напряжения, которое светодиод преобразует в свечение.
Также требуется знать мощность резистора. Она вычисляется как P=I*I*R=(Uпит-Uпад)*(Uпит-Uпад)/R.
Таким образом, для тока в 20 мА, сети 220 В и падения напряжения на диоде 2,2-3 В номинал сопротивления должен быть равен 30 кОм. Мощность сопротивления равняется 2 Вт.
Упрощенная схема подключения будет состоять из светодиода, диода, конденсатора и резисторов.
Но такое соединение используется все реже. Чтобы подключить светодиоды к электросети, используются специальные устройства – драйверы. Они преобразуют переменное напряжение 220 В в постоянное, пригодное для работы элемента. В большинстве светодиодных лент драйверы уже имеются в конструкции. В основе драйвера находятся диодный мост, делитель напряжения и стабилизатор. Основное преимущество – простота исполнения и надежность эксплуатации.
Как выбрать нужный драйвер, зависит от трех параметров:
- выходной ток;
- максимальное и минимальное напряжение на выходе;
Рабочий ток является важнейшей характеристикой. Ток драйвера должен быть чуть меньше или равен току светодиода.
Подключение к сети 12 в
Напряжение 12 В является оптимальным для работы светоизлучающего диода. Оно безопасно, и используется для включения в особо опасных помещениях (ванная, смотровые ямы гаража, бани).
Для подключения к 12 В нужен резистор. Он рассчитывается по той же формуле, что и для 220 В.
Важное преимущество 12 В – оно постоянное. Это позволяет упростить схему соединения.
Последовательное подключение
Чтобы подключить светодиоды последовательно, нужно к катоду одного устройства припаять анод другого, и так до нужной длины цепочки. Соединение производится через токоограничивающий резистор. По схеме будет протекать один и тот же ток через все элементы. Уровень напряжения будет суммой падений на каждом участке.
Так, для подключения к источнику питания с напряжением 12 Вольт потребуется не более четырех светодиодов 3 Вольт (3*4=12). Для большего числа диодов нужен более мощный аккумулятор.
Преимущества и недостатки
- одинаковый уровень тока;
- простота.
- количество светодиодов ограничено падением напряжения;
- если сломается один элемент, непригодной становится вся цепочка.
Схема раньше использовалась в гирляндах для елки. Сейчас ее вытеснило смешанное соединение.
Параллельное подключение
При параллельном подключении уровень напряжения на каждом светодиоде одинаков. Сила тока наоборот состоит из суммы токов, проходящих через элементы. Подключаются диоды так же через резисторы, но для каждого устройства он свой. Это связано с тем, что любой светоизлучающий диод имеет различные характеристики. Если поставить один резистор, через светодиоды будет пропускаться разный ток, и некоторые могут выйти из строя.
Параллельное подключение может использоваться для реализации двухцветного свечения ламп.
Плюсы и минусы
- можно использовать большее количество диодов;
- если перегорит один светодиод, цепь продолжит работу.
- требуется много резисторов;
- если сломается один элемент, на другие увеличится нагрузка.
Смешанное подключение
Смешанный тип соединения является самим оптимальным. Он используется во всех LED лентах, гирляндах, светодиодных панелях и представляет собой смесь параллельного и последовательного включений.
Так, параллельно включаются не отдельные элементы, а группы светодиодов. В группах диоды подключаются последовательно через один резистор для каждой цепи.
- при поломке элемента из одной цепочки вся гирлянда будет светить дальше;
- нужно не так много резисторов.
В этом способе учтены и исправлены все недостатки из параллельного и последовательного соединений.
Как подключить мощный светодиод
Для мощного светодиода потребуется источник питания с большим номиналом. Так, диод 1 В будет загораться, если по нему будет протекать ток величиной не менее 350 мА. Для 5 В элемента потребуется источник тока с нагрузкой не менее 1,4 А.
Схема соединения также будет включать токоограничивающий резистор и интегральный стабилизатор напряжения. Он помогает обезопасить светодиод от скачков электричества. Чаще всего используется интегральная микросхема LM317 для стабилизации. Подключить мощный светодиод можно параллельно, последовательно и комбинированным способом.
Распространенные ошибки при подключении
Самые часто встречающиеся ошибки при соединении светодиодов:
- Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
- Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
- Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
- Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
- Подключение напрямую к сети 220 В без защиты.
Важно! Совершение описанных ошибок повлечет за собой негативные последствия в виде поломки диода или нанесения себе травм.
Основные выводы
Все светодиоды, в не зависимости от их рабочего напряжения или силы тока, подключаются последовательно или параллельно. Способ включения может быть и комбинированным – в таком случае устраняются недостатки последовательного и параллельного соединений. Важно уметь правильно собирать цепь, подбирать источник питания, считать номиналы токоограничивающих резисторов и нужное количество светодиодов, чтобы схема функционировала. Соединение без токоограничивающего резистора и других защитных элементов приведет к поломке диода.
Правильное подключение светодиодов
На сегодняшний день существуют сотни разновидностей светодиодов, отличающихся внешним видом, цветом свечения и электрическими параметрами. Но всех их объединяет общий принцип действия, а значит, и схемы подключения к электрической цепи тоже базируются на общих принципах. Достаточно понять, как подключить один индикаторный светодиод, чтобы затем научиться составлять и рассчитывать любые схемы.
- Распиновка светодиода
- Простейшая схема подключения светодиода
- Расчёт ограничительного резистора
- Включение светодиодов от блока питания
- Последовательное подключение
- Параллельное подключение
- Смешанное включение
- Включение в сеть переменного тока
- Подключение мигающих и многоцветных светодиодов
- Ещё раз о трёх важных моментах
Распиновка светодиода
Прежде чем перейти к рассмотрению вопроса о правильном подключении светодиода, необходимо научиться определять его полярность. Чаще всего индикаторные светодиоды имеют два вывода: анод и катод. Гораздо реже в корпусе диаметром 5 мм встречаются экземпляры, имеющие 3 или 4 вывода для подключения. Но и с их распиновкой разобраться тоже несложно.
Всего существует 3 надёжных способа определения полярности: визуальный, с помощью мультиметра и путём подключения к источнику напряжения. Каждый из них по-своему уникален и интересен, в связи с чем данная тема вынесена в отдельную статью: «Где плюс, а где минус?»
SMD-светодиоды могут иметь 4 вывода (2 анода и 2 катода), что обусловлено технологией их производства. Третий и четвёртый выводы могут быть электрически незадействованными, но использоваться в качестве дополнительного теплоотвода. Приведенное расположение выводов не является стандартом. Для вычисления полярности лучше сначала заглянуть в datasheet, а затем подтвердить увиденное мультиметром. Визуально определить полярность SMD-светодиода с двумя выводами можно по срезу. Срез (ключ) в одном из углов корпуса всегда расположен ближе к катоду (минусу).
Простейшая схема подключения светодиода
Нет ничего проще, чем подключить светодиод к низковольтному источнику постоянного напряжения. Это может быть батарейка, аккумулятор или маломощный блок питания. Лучше, если напряжение будет не менее 5 В и не более 24 В. Такое подключение будет безопасным, а для его реализации понадобится лишь 1 дополнительный элемент – маломощный резистор. Его задача – ограничить ток, протекающий через p-n-переход на уровне не выше номинального значения. Для этого резистор всегда устанавливают последовательно с излучающим диодом.
Всегда соблюдайте полярность при подключении светодиода к источнику постоянного напряжения (тока).
Если из схемы исключить резистор, то ток в цепи будет ограничен только внутренним сопротивлением источника ЭДС, которое очень мало. Результатом такого подключения станет мгновенный выход из строя излучающего кристалла.
Расчёт ограничительного резистора
Взглянув на вольт-амперную характеристику светодиода, становится понятно: насколько важно не ошибиться при расчёте ограничительного резистора. Даже небольшой рост номинального тока приведёт к перегреву кристалла и, как следствие, к снижению рабочего ресурса. Выбор резистора производят по двум параметрам: сопротивлению и мощности. Сопротивление рассчитывают по формуле:
- U – напряжение питания, В;
- ULED – прямое падение напряжения на светодиоде (паспортное значение), В;
- I – номинальный ток (паспортное значение), А.
Полученный результат следует округлить до ближайшего номинала из ряда Е24 в большую сторону, а затем рассчитать мощность, которую должен будет рассеивать резистор:
R – сопротивление резистора, принятого к установке, Ом.
Более подробную информацию о расчётах с практическими примерами можно получить в статье о расчете резистора для светодиода. А тот, кто не желает погружаться в нюансы, может быстро рассчитать параметры резистора с помощью онлайн-калькулятора.
Включение светодиодов от блока питания
Речь пойдёт о блоках питания (БП), работающих от сети переменного тока 220 В. Но даже они могут сильно отличаться друг от друга выходными параметрами. Это могут быть:
- источники переменного напряжения, внутри которых есть только понижающий трансформатор;
- нестабилизированные источники постоянного напряжения (ИПН);
- стабилизированные ИПН;
- стабилизированные источники постоянного тока (светодиодные драйверы).
Подключить светодиод можно к любому из них, дополнив схему нужными радиоэлементами. Чаще всего в качестве блока питания применяют стабилизированные ИПН на 5 В или 12 В. Данный тип БП подразумевает, что при возможных колебаниях напряжения сети, а также при изменении тока нагрузки в заданном диапазоне напряжение на выходе изменяться не будет. Это преимущество позволяет подключать к БП светодиоды, используя только резисторы. И именно такой принцип подключения реализован в схемах с индикаторными светодиодами. Подключение мощных светодиодов и светодиодных матриц нужно производить через стабилизатор тока (драйвер). Несмотря на их более высокую стоимость, только так можно гарантировать стабильную яркость и продолжительную работу, а также исключить преждевременную замену дорогостоящего светоизлучающего элемента. Такое подключение не требует наличия дополнительного резистора, а светодиод присоединяется непосредственно к выходу драйвера с соблюдением условия:
- Iдрайвера – ток драйвера по паспорту, А;
- ILED – номинальный ток светодиода, А.
При несоблюдении условия, подключенный светодиод перегорит от перегрузки по току.
В качестве источника питания можно использовать даже одну пальчиковую батарейку на 1,5 В. Но для этого придётся собрать небольшую электрическую схему, которая позволит повысить напряжение питания до нужного уровня. О том, как это сделать, можно узнать из статьи «Как подключить светодиод от батарейки на 1,5 В».
Последовательное подключение
Собрать рабочую схему на одном светодиоде – несложно. Другое дело, когда их несколько. Как правильно подключить 2, 3 … N светодиодов? Для этого нужно научиться рассчитывать более сложные схемы включения. Схема последовательного подключения представляет собой цепь из нескольких светодиодов, в которой катод первого светодиода соединен с анодом второго, катод второго с анодом третьего и так далее. Через все элементы схемы течёт ток одинаковой величины:
А падения напряжений суммируются:
Исходя из этого, можно сделать выводы:
- объединять в последовательную цепь целесообразно только светодиоды с одинаковым рабочим током;
- при выходе из строя одного светодиода произойдёт обрыв цепи;
- количество светодиодов ограничено напряжением БП.
Параллельное подключение
Если от БП с напряжением, например, 5 В, необходимо зажечь несколько светодиодов, то их придется соединить между собой параллельно. При этом последовательно с каждым светодиодом нужно поставить резистор. Формулы для расчёта токов и напряжений примут следующий вид:
Таким образом, сумма токов в каждой ветви не должна превышать максимально допустимый ток БП. При параллельном подключении однотипных светодиодов достаточно рассчитать параметры одного резистора, а остальные – будут такого же номинала.
Все правила последовательного и параллельного подключения, наглядные примеры, а также информацию о том, как нельзя включать светодиоды, можно найти в данной статье.
Смешанное включение
Разобравшись со схемами последовательного и параллельного подключения, пришло время комбинировать. Один из вариантов комбинированного подключения светодиодов показан на рисунке.
Кстати, именно так устроена каждая светодиодная лента.
Включение в сеть переменного тока
Подключать светодиоды от БП не всегда целесообразно. Особенно, если речь идёт о необходимости сделать подсветку выключателя или индикатор наличия напряжения в сетевом удлинителе. Для подобных целей достаточно будет собрать одну из простых схем подключения светодиода к сети 220 В. Например, схема с токоограничительным резистором и выпрямительным диодом, защищающим светодиод от обратного напряжения. Сопротивление и мощность резистора вычисляют по упрощённой формуле, пренебрегая падением напряжения на светодиоде и диоде, так как оно на 2 порядка меньше напряжения сети:
Из-за большой мощности рассеивания (2–5 Вт), резистор часто заменяют неполярным конденсатором. Работая на переменном токе, он как бы «гасит» лишнее напряжение и почти не нагревается.
Подключение мигающих и многоцветных светодиодов
Внешне мигающие светодиоды ничем не отличаются от обычных аналогов и могут мигать одним, двумя или тремя цветами по заданному производителем алгоритму. Внутреннее отличие состоит в наличии под корпусом ещё одной подложки, на которой расположен интегральный генератор импульсов. Номинальный рабочий ток, как правило, не превышает 20 мА, а падение напряжения может варьироваться от 3 до 14 В. Поэтому перед подключением мигающего светодиода нужно ознакомиться с его характеристиками. Если их нет, то узнать параметры можно экспериментальным путём, подключившись к регулируемому БП на 5–15 В через резистор сопротивлением 51-100 Ом.
В корпусе многоцветного RGB-светодиода расположены 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов нужно помнить, что каждому цвету свечения соответствует своё падение напряжения.
Подробно о методах подключения светодиодов
В нашей жизни светодиоды уверенно теснят из светотехники другие источники искусственного света. Но если лампы накаливания можно включать прямо к источнику электропитания, то подключение светодиода и разрядных ламп требует особых мер.
При этом подключение единичного светодиода проблем не вызывает. А включить от нескольких единиц до сотен – не так просто, как кажется.
Немного теории
Для нормальной работы светодиода требуется постоянное напряжение или ток. Они должны быть:
- Постоянными по направлению. Т. е. ток в цепи светодиода при приложении напряжения должен течь от «+» источника напряжения к его «–».
- Стабильными, т. е. постоянными по величине, в течение времени работы диода.
- Не пульсирующими – после выпрямления и стабилизации величины постоянных напряжения или тока не должны периодически изменяться.
Для светодиодов вначале использовали имевшиеся источники напряжения – 5, 9, 12 В. А рабочее напряжение p-n перехода от 1,9-2,4 до 3,7-4,4 В. Поэтому включение диода напрямую – это почти всегда его физическое сгорание от перегрева большим током. Ток нужно ограничивать токоограничивающим резистором, тратя энергию на его нагрев.
Светодиоды можно включать последовательно по несколько штук. Тогда, собрав из них цепочку, можно по сумме их прямых напряжений дойти почти до напряжения источника питания. А оставшуюся разницу «погасить», рассеяв ее в виде тепла на резисторе.
Когда диодов десятки, их соединяют в последовательные цепи, которые включают параллельно.
Распиновка светодиода
Полярность светодиода – анод или плюс и катод – минус определить легко по картинкам:
Более подробно про способы определения полярности светодиодов читайте в этой статье.
Схема включения светодиода
Светодиод питают постоянным напряжением. Но особенности нелинейной зависимости его внутреннего сопротивления требуют держать рабочий ток в узких пределах. При токе меньше номинального уменьшается световой поток, а при большем – кристалл перегревается, яркость свечения растет, а «жизнь» сокращается. Простейший способ ее продлить– ограничить ток через кристалл включая токоограничивающий резистор. У мощных светодиодов это экономически невыгодно, потому их питают постоянным током от специсточника стабильного тока – драйвера.
Последовательное соединение
Светодиод – это довольно сложный светотехнический прибор. Работает он от вторичного источника постоянного напряжения. При мощности более 0,2-0,5 Вт в большинстве светодиодных устройств используют источники тока. Их не совсем корректно, на американский манер, называют драйверами. При последовательном включении диодов часто используют источники питания с напряжением 9, 12, 24 и даже 48 В. В этом случае выстраивают последовательную цепочку, в которой может быть от 3-6 до нескольких десятков элементов.
При последовательном соединении в цепочке анод первого светодиода включают через токоограничивающий резистор к «+» источника питания, а катод – к аноду второго. И так соединяется вся цепочка.
Например, красные светодиоды имеют прямое рабочее напряжение от 1,6 до 3,03 В. При Uпр. = 2,1 В одного светодиода на резисторе при напряжении источника 12 В будет напряжение 5,7 В:
12 В — 3×2,1 В = 12 — 6,3 = 5,7 В.
А уже 3 последовательные цепочки соединяют параллельно.
Таблица прямого напряжения на светодиоде от цвета его свечения.
Цвет свечения | Напряжение рабочее, прямое, В | Длина волны, нм |
Белый | 3,5 | Широкий спектр |
Красный | 1,63–2,03 | 610-760 |
Оранжевый | 2,03–2,1 | 590-610 |
Желтый | 2,1–2,18 | 570-590 |
Зеленый | 1,9–4,0 | 500-570 |
Синий | 2,48–3,7 | 450-500 |
Фиолетовый | 2,76–4 | 400-450 |
Инфракрасный | до 1,9 | от 760 |
Ультрафиолетовый | 3,1–4,4 | до 400 |
При последовательной схеме включения светодиодов соединении токи через светодиоды будут одинаковые, а падение на каждом элементе индивидуальное. Оно зависит от внутреннего сопротивления диода.
Свойства последовательного соединения:
- обрыв одного элемента приводит к выключению всех;
- закорачивание – перераспределяет его напряжение на все оставшиеся, на них увеличивается яркость свечения и ускоряется деградация.
Параллельное соединение
В этой схеме подключения светодиодов все аноды соединяют между собой и с «+» источника питания, а катоды – с «-».
Такое соединение было на первых светодиодных гирляндах, линейках и лентах при питании от напряжения 3-5 В.
Если перегорание произойдет с замыканием p-n перехода, то всё напряжение батареи приложится к резистору R1. Он перегреется и сгорит.
- серые полоски – токоведущие шины, т. е. провода без изоляции;
- синие цилиндрики со скругленным торцом – цилиндрические светодиоды с линзой на торце;
- красные – резисторы для ограничения рабочего тока.
Неправильно будет подключать все диоды на один резистор. Из-за разброса характеристик светодиодов, даже в одной партии могущего достигнуть от 50 до 200% и более, через диоды может протекать ток, который будет различаться в разы. Поэтому и светиться, и нагружаться они будут также по-разному. Позднее наиболее нагруженный, светящийся ярче других, перегорит или деградирует до почти полного затухания, потеряв 70-90% светового потока. Или сменит оттенок свечения с белого на желтый.
Смешанное
Комбинированное или смешанное подключение применяют при создании светодиодных матриц, состоящих из многих десятков или сотен элементов или бескорпусных кристаллов. Самые известные из них – это COB-матрицы.
Питающее напряжение и рабочий ток при комбинированном включении будут меньше номинальных рабочих. Только при таком условии матрица будет более-менее долго работать. На номинальном токе быстро выгорит самое слабое звено и начнется постепенное выгорание остальных. Оно закончится обрывами в последовательных цепочках и закорачиванием параллельных.
Подключение светоизлучающего диода к сети 220 В
Если запитать светодиод прямо от 220 В с ограничением его тока, то светить он будет при положительной полуволне и гаснуть при отрицательной. Но это только в том случае, когда обратное напряжение p-n перехода будет много больше 220 В. Обычно это в районе 380-400 В.
Второй способ включения– через гасящий конденсатор.
ВНИМАНИЕ! Большинство схем с прямым подключением в сеть 220 В имеют серьезный недостаток – они опасны поражением человека высоким напряжением – 220 В. Поэтому их следует использовать аккуратно, с тщательной изоляцией всех токоведущих частей.
Подробная информация о подключении светодиода к сети 220 В описана тут.
Как запитать диоды от блока питания
Самые популярные бестрансформаторные импульсные блоки питания (БП) дают 12 В с защитами по току, к.з., перегреву и пр.
Поэтому светодиоды соединяют последовательно и ограничивают их ток обычным резистором. В цепочку включают 3 или 6 диодов. Их количество определяется прямым напряжением диода. Их сумма для токоограничения должна быть меньше выходного напряжения БП на 0,5-1 В.
Особенности подключения RGB и COB светодиодов
Светодиоды с аббревиатурой RGB – это полихромные или многоцветные излучатели света разных цветов. Большинство из них собираются из трех светодиодных кристаллов, каждый из которых излучает свой цвет. Такая сборка называется цветовая триада.
Подключение RGB-светодиода производят так же, как и обычных светодиодов. В каждом корпусе такого многоцветного источника света располагаются по одному кристаллу: Red – красный, Green – зеленый и Blue – синий. Каждому светодиоду соответствует свое рабочее напряжение:
- синему – от 2,5 до 3,7 В;
- зеленому – от 2,2 до 3,5 В;
- красному – от 1,6 до 2,03 В.
Кристаллы могут быть соединены между собой по-разному:
- с общим катодом, т. е. три катода соединены между собой и с общим выводом на корпусе, а аноды – каждый имеет свой вывод;
- с общим анодом – соответственно для всех анодов вывод общий, а катоды – индивидуальные;
- независимая цоколевка – каждый анод и катод имеет собственный вывод.
Поэтому номиналы токоограничивающих резисторов будут разными.
В обоих случаях корпус диода имеет по 4 проволочных вывода, контактных площадок в SMD-светодиодах или штырька в корпусе «пиранья».
В случае с независимыми светодиодами выводов будет 6.
В корпусе SMD 5050 кристаллы-светодиоды располагают так:
Подключение светодиодов типа COB
Аббревиатура COB – это первые буквы английского словосочетания chip-on-board. По-русски это будет – элемент или кристалл на плате.
Кристаллы клеят или паяют на теплопроводящую подложку из сапфира или кремния. После проверки правильности электрических соединений, кристаллы заливают желтым люминофором.
Светодиоды типа COB – это матричные конструкции, состоящие из десятков или сотен кристаллов, которые соединены группами с комбинированным включением полупроводниковых p-n-переходов. Группы – это последовательные цепочки светодиодов, количество которых соответствует напряжению питания светодиодной матрицы. Например, при 9 В это 3 кристалла, 12 В – 4.
Цепочки с последовательным включением соединяют параллельно. Таким образом набирают требуемую мощность матрицы. Кристаллы синего свечения заливают желтым люминофором. Он переизлучает синий свет в желтый, получая белый.
Качество света, т. е. цветопередачу регулируют в процессе производства составом люминофора. Одно- и двухкомпонентный люминофор дает невысокое качество, т. к. имеет в спектре 2-3 линии излучения. Трех- и пятикомпонентный – вполне приемлемую цветопередачу. Она может быть до 85-90 Ra и даже выше.
Подключение этого вида излучателей света не вызывает проблем. Их включают как обычный мощный светодиод, питаемый источником тока стандартного номинала. Например, 150, 300, 700 мА. Производитель СОВ-матриц рекомендует выбирать источники тока с запасом. Он поможет при запуске светильника с COB-матрицей в эксплуатацию.
Светодиоды: виды и схема подключения
Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).
Содержание статьи
- Устройство светодиода
- Как работает светодиод?
- Виды и основные параметры светодиодов
- Применение светодиодов
- Основные правила подключения светодиодов
- Основные характеристики светодиодов
- Способы подключения
- Как подключить светодиоды к сети переменного тока 220 В через блок питания
- Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение
Устройство светодиода
Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.
Как работает светодиод?
Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.
Виды и основные параметры светодиодов
На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.
По назначению светодиоды разделяют на два вида – индикаторные и осветительные.
- светодиоды SMD;
- сверхъяркие Super Flux “Piranha”;
- DIP светодиоды (Direct In-line Package);
- Straw Hat («соломенная шляпа»).
- COB (Chip On Board) светодиоды;
- SMD LED;
- филаментные (Filament LED).
Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:
- DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
- «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
- «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
- SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.
Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:
- cool white – холодный;
- warm white – теплый.
Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.
Применение светодиодов
Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.
- значительная длительность эксплуатации;
- экологическая безопасность;
- высокая надежность и безотказность;
- экономия электроэнергии;
- высокое качество освещения;
- низкие эксплуатационные расходы.
Основные правила подключения светодиодов
Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:
- По длине ножки (кроме SMD). Более длинная ножка является катодом, а короткая – анодом. В SMD-светодиодах имеется срез (ключ), который всегда располагается ближе к катоду.
- С помощью мультиметра. Прибор устанавливают в режим «Прозвонка». Красный и черный щупы устанавливают на выводы. Если прибор засветился, то, значит, что красный щуп был подключен к аноду, а черный – к катоду. Если свечение не возникло, значит, надо поменять положение щупов. Если результат не изменился (свечение отсутствует), значит, прибор вышел из строя.
Основные характеристики светодиодов
Две главные характеристики, указываемы в паспорте светоизлучающего прибора:
- Падение напряжения на приборе. Типичное значение – 3,2 В. Также для каждого светодиода существуют максимально допустимые напряжения Umax и Umaxобр – для прямого и обратного включений.
- Номинальный ток. Обычно эти приборы рассчитаны на силу тока в 20 мА.
Способы подключения
Простейший вариант – подключение к низковольтному источнику постоянного тока.
Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.
Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:
R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:
- Uпитания – напряжение электропитания, В;
- Uпаспорт. – падение напряжения, паспортное значение, В;
- Iном. – номинальный ток.
Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.
P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.
Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.
Как подключить светодиоды к сети переменного тока 220 В через блок питания
Существует несколько типов блоков питания:
- Стабилизированные источники постоянного напряжения для светодиодов на 5 Вольт и 12 Вольт. При колебаниях параметров сети напряжение на выходе такого источника питания остается постоянным и равным заявленной в паспорте величине. LED-светильники подсоединяют через резисторы.
- Драйвер – импульсный блок питания со стабилизированным током. Характеристики, которые учитывают при его выборе: максимальное и минимальное выходное напряжение, выходной (рабочий) ток. В драйвере присутствует схема, стабилизирующая ток при скачках входного напряжения 220 В. При подключении светодиодного излучателя к драйверу резистор не требуется.
Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение
При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.
Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.
Минусы последовательного соединения:
- При значительном количестве элементов цепи необходимо выбирать БП большого вольтажа.
- При выходе из строя одного LED-диода перестает работать вся цепь.
В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.
При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.
Минусы параллельного подключения:
- большое количество элементов цепи из-за необходимости использования индивидуальных резисторов для каждого диода;
- существенный рост нагрузки при перегорании одного LED-диода (если используется один мощный резистор на всю цепь).
Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.