Параллельное соединение диодов в выпрямителе

Параллельное соединение диодов в выпрямителе

Выпрямители. Как и почему.

Автор:
Опубликовано 20.04.2006

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001. 0,01%
Цифровая техника — пульсации 0,1. 1%
Усилители мощности — пульсации нагруженного блока питания 1. 10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.

Параллельное соединение диодов

В электротехнике нередко возникает необходимость в получении выпрямленного тока, который превышает предельную величину, соответствующую одному диоду. В таких случаях, применяется параллельное соединение диодов одного типа. Это позволяет равномерно распределить проходящий через них ток. Однако, не всегда удается добиться такой равномерности, поэтому приходится прибегать к искусственному выравниванию прямых сопротивлений диодов. Для этого используются добавочные сопротивления с небольшой величиной, включаемые в последовательную цепь с каждым диодом. В результате, получается работающая схема со всеми необходимыми параметрами.

  1. Для чего диоды соединяются параллельно
  2. Последовательное соединение
  3. Ошибки при пайке транзисторов и диодов

Для чего диоды соединяются параллельно

Основной целью параллельного соединения диода является увеличение их прямого тока. Это основной параметр каждого диода. Однако, существует большое количество диодов, рассчитанных на различные значения токов в самом широком диапазоне. Поэтому, обычное параллельное соединение полностью не решает вопроса по увеличению общего прямого тока.

Читайте также  Как отличить последовательное соединение от параллельного?

Если каждый из диодов, включенных параллельно, будет обладать прямым током в 1 ампер и максимальным обратным напряжением 100 вольт, то вся цепочка будет иметь параметры в 3 ампера и 100 вольт. То есть, параллельное включение предполагает возрастание прямого тока, пропорционально количеству включенных диодов. При этом, максимальное значение обратного напряжения остается неизменным.

Когда производится параллельное соединение диодов с разными характеристиками, то и распределение прямого тока будет неравномерным. Диод, имеющий наименьшее сопротивление, будет брать на себя в прямом направлении большее количество тока. При наступлении определенных обстоятельств, такое превышение может стать критическим и привести к пробою диода. Для того, чтобы избежать подобной ситуации, с каждым светодиодом последовательно подключается резистор. Их сопротивление выбирается из расчета, что напряжение будет падать не более чем на 1 вольт.

Кроме параллельного, в электрических цепях нередко используется последовательное соединение диодов, что при определенных обстоятельствах имеет решающее значение.

Последовательное соединение

В электротехнике используется не только параллельное соединение диодов. Для высоковольтных цепей нередко применяется их последовательное соединение. При таком варианте соединения происходит равномерное распределение напряжения между всеми подключенными диодами.

Тем не менее, здесь также необходимо учитывать различные значения обратных токов. Таким образом, в случае последовательного включения, будет наблюдаться падение большей части приложенного напряжения на диоде, имеющем минимальный обратный ток. В случае превышения допустимого значения обратного напряжения, может произойти пробой диода. Поэтому, здесь также падение напряжения искусственно выравнивается, для чего используются специальные шунтирующие сопротивления.

Ошибки при пайке транзисторов и диодов

Параллельное соединение резисторов

Последовательное и параллельное соединение резисторов

Напряжение при последовательном и параллельном соединении резисторов

Сопротивление при последовательном и параллельном соединении резисторов

Последовательное и параллельное соединение проводников

Какая схема подключения светодиодов лучше — последовательная или параллельная

Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.

Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).

Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.

Для примера, заглянем в даташит светодиода 2835:

Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.

Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.

Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.

Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).

Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожжёте его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).

К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.

Вот прекрасная иллюстрация к вышесказанному:

А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.

Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.

Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.

Параллельное подключение

При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).

Очевидно, что такого неравномерного распределения мощностей нужно избегать.

Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:

Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.

Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.

В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:

Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.

Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.

Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):

Uпит ILED
5 мА 10 мА 20 мА 30 мА 50 мА 70 мА 100 мА 200 мА 300 мА
5 вольт 340 Ом 170 Ом 85 Ом 57 Ом 34 Ом 24 Ом 17 Ом 8.5 Ом 5.7 Ом
12 вольт 1.74 кОм 870 Ом 435 Ом 290 Ом 174 Ом 124 Ом 87 Ом 43 Ом 29 Ом
24 вольта 4.14 кОм 2.07 кОм 1.06 кОм 690 Ом 414 Ом 296 Ом 207 Ом 103 Ом 69 Ом

При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.

Читайте также  Как соединить антенный кабель со штекером?

Последовательное подключение

При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.

Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).

Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:

Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!

Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.

Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.

Вот пример готового устройства:

Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.

И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.

Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.

Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:

Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.

Как выбрать нужный драйвер?

Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:

  1. выходной ток;
  2. максимальное выходное напряжение;
  3. минимальное выходное напряжение.

Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.

Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:

Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.

Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.

Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).

Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.

Следовательно, для наших целей подойдет что-нибудь вроде этого:

Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.

Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:

Светодиоды Какой нужен драйвер
60 мА, 0.2 Вт (smd 5050, 2835) см. схему на TL431
150мА, 0.5Вт (smd 2835, 5630, 5730) драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов)
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода)
700 мА, 3 Вт (led 3W, фитосветодиоды) драйвер 700мА (для 6-10 светодиодов)
3000 мА, 10 Ватт (XML2 T6) драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему

Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.

Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.

Особенности параллельного подключения светодиодов

Известно, что светодиоды лучше всего соединять последовательно. В этом случае ток на каждом из них будет одинаковый, что упрощает контроль над ним. Но бывают случаи, что без параллельного соединения не обойтись.

Например, если есть источник питания, и к нему необходимо подключить несколько светодиодных лампочек, суммарное падение напряжений на которых превышает напряжение источника. Иными словами, питания источника не достаточно для последовательно соединенных лампочек, и они не загораются.

Тогда лампочки включают в цепь параллельно и на каждую ветку ставят свой резистор.

По законам параллельного соединения падение напряжений на каждой ветке будет одинаковым и равным напряжению источника, а ток может отличаться. В связи с этим расчеты по определению характеристик резисторов будут проводиться отдельно для каждой ветки.

Запрет на один резистор

Почему нельзя подсоединить все светодиодные лампочки к одному резистору? Потому что технология производства не позволяет сделать светодиоды с идеально равными характеристиками. Светодиоды имеют разное внутреннее сопротивление, и порой различия в нем очень сильны даже для одинаковых моделей, взятых из одной партии.

Большой разброс сопротивления приводит к разбросу в значении тока, а это в свою очередь приводит к перегреву и перегоранию. Значит, надо проконтролировать ток на каждом светодиоде или на каждой ветке с последовательным соединением. Ведь при последовательном соединении ток одинаковый. Для этого и применяют отдельные резисторы. С их помощью стабилизируют ток.

Основные характеристики элементов цепи

Слегка подумав, становится понятным, что одна ветка сможет содержать максимальное количество светодиодов такое же, как при последовательном соединении и питании от этого же источника.

Например, у нас есть источник на 12 вольт. К нему можно последовательно подсоединить 5 светодиодов по 2 вольта. (12 вольт:2 вольта:1,15≈5). 1,15- это коэффициент запаса, поскольку необходимо рассчитывать, что в цепь будет включен еще и резистор.

Сопротивление резистора рассчитывается с помощью закона Ома: I=U/R, где I будет допустимым током, взятым из таблицы характеристик прибора. Напряжение U получится, если из максимального напряжения источника питания вычесть падения напряжений на каждом светодиоде, входящем в последовательную цепочку (тоже берется из таблицы характеристик).

Мощность резистора находится из формулы:

При этом все величины записываются в системе Си. Напомним, что 1 A=1000 мA, 1 мA=0,001 A, 1 Ом=0,001 кОм, 1 Вт=1000 мВт.

Сегодня много онлайн калькуляторов, которые предлагают выполнить эту операцию автоматически, просто подставив известные характеристики в пустые ячейки. Но основные понятия знать все-таки полезно.

Преимущество параллельного включения диодов

Параллельное соединение позволяет добавить 2 или 5, или 10 светодиодов, или больше. Ограничением является мощность источника питания и габариты прибора, в котором вы хотите применить такое соединение.

Лампочки для каждой параллельной ветки берут строго одинаковые, чтобы у них были максимально похожие значения допустимого тока, прямого и обратного напряжения.

Читайте также  Последовательное соединение светодиодов на 220в

Преимущество параллельного соединения светодиодов в том, что если один из них перегорит, вся цепь продолжит работать. Лампочки будут светиться и при перегорании их большего количества, главное, чтобы хоть одна ветка оставалась неповрежденной.

Как видно, параллельное соединение – это довольно полезная вещь. Просто надо уметь правильно собрать цепь, не забывая обо всех свойствах светодиодов и о законах физики.

Во многих схемах параллельное соединение комбинируют с последовательным, что позволяет создать функциональные электрические приборы.

Применение параллельного соединения светодиодов

Схема параллельного подключения с двумя выводами позволяет реализовывать двухцветное свечение лампочек, если используются два кристалла разного цвета. Цвет меняется при изменении полюсов источника (изменение направления тока). Широкое применение такая схема находит в двухцветных индикаторах.

Если два кристалла разного цвета соединить параллельно в одном корпусе и подключить к ним импульсный модулятор, то можно менять цвет в широком диапазоне. Особенно много тонов генерируется при сочетании зеленого и красного цвета светодиодов.

Как видно на схеме, к каждому кристаллу подключен свой резистор. Катод в таком соединении общий, а вся система подключена к управляющему устройству – микроконтроллеру.

В современных праздничных гирляндах иногда применяется смешанный тип соединения, в котором несколько последовательных рядов соединяются параллельно. Это позволяет гирлянде светиться, даже если несколько светодиодных источников выйдут из строя.

При создании подсветки в помещении тоже могут применять параллельное соединение. Смешанные схемы используются при конструкции многих индикаторных электроприборов и для подсвечивающих устройств.

Несколько нюансов монтажа

Отдельно можно сказать о том, как соединяются светодиоды между собой. Каждый кристалл заключен в корпус, из которого идут выводы. На выводах зачастую стоят отметки «-» или «+», что означает соответственно подключение к катоду и к аноду прибора.

Опытные радиолюбители даже на глаз могут определить полярность, поскольку катодный вывод чуть длиннее и чуть больше выступает из корпуса. Подключение светодиодов необходимо осуществлять, строго соблюдая полярность.

Если речь идет о мощных светодиодах, то в процессе монтажа довольно часто применяют пайку. Для этого используют маломощный паяльник, чтобы ни в коем случае не перегреть кристалл. Время пайки не должно превышать 4-5 секунд. Лучше, если это будет 1-2 секунды. Для этого паяльник разогревают заранее. Выводы сильно не сгибают. Схему собирают на площадке из материала, который хорошо отводит тепло.

3 Параллельное и последовательное соединение диодов

На практике нередко возникают ситуации, когда допускаемое среднее значение прямого тока диода оказывается недостаточным для обеспечения больших токов нагрузки; в этих случаях приходится применять параллельное соединение диодов. Однако при параллельном включении диодов за несовпадения их ВАХ токи в диодах будут неодинаковыми (рисунок 3.1, а). Для выравнивания токов при параллельном включении диодов в маломощных выпрямителях последовательно с ними устанавливаются резисторы с оди­наковыми сопротивлениями, включение которых позволяет уменьшить разность токов в диодах (рисунок 3.1, а, б). Однако эти резисторы уменьшают КПД схемы, и поэтому приме­нять их в мощных выпрямителях не рекомендуется.

Если диоды включаются параллельно без уравнитель­ных сопротивлений, то необходимо применить заведомо уве­личенное число диодов, тем самым уменьшить ток в каж­дом из них, а значит, исключить опасность перегрузки.

Рисунок 3.1 — Параллельное и последовательное соединения диодов

В мощных выпрямителях вместо резисторов последова­тельно с каждым диодом включают специальные токовыравнивающие реакторы (дроссели с сердечниками L1, L2). На этих дросселях (рисунок 3.1, в) при протекании тока созда­ется противо — ЭДС, пропорциональная этому току, что и при­водит к выравниванию токов дросселей, а значит, и диодов.

Диоды одного типа можно соединить последовательно для увеличения обратного допустимого напряжения. Одна­ко из-за несовпадения обратных ветвей ВАХ обратные напряжения распределятся между диодами неравномерно. Для выравнивания обратных напряжений диоды малой и сред­ней мощности необходимо шунтировать высокоомными резисторами. Если диоды включаются последовательно без шунтиру­ющих резисторов, то необходимо заведомо увеличить число диодов при этом обратное напряжение на каждом из них снижается (не менее чем на 25 %) и исключается опасность перенапряжений.

В выпрямителях большой мощности этот способ выравнивания непригоден из-за значительных потерь в шунтирующих резисторах. Поэтому в этих случаях применяются шунтирующие RС — цепочки (рисунок 3.1, д), причем сопротивление шунтирующих резисторов равно 500 — 2000 Ом (меньше значение соответствует более мощным диодам); включение конденсаторов позволяет снизить коммутационные перенапряжения. Иногда в качестве реактивных делителей включаются только шунтирующие конденсаторы.

Поскольку германиевые и кремниевые диоды чувствительны к токовым перегрузкам и перенапряжениям, то необходимо принимать специальные меры по защите этих диодов и всей системы электропитания. Кремниевые диоды с лавинными характеристиками выдерживают кратковременные перенапряжения, что упрощает их защиту.

4 Однофазная однополупериодная схема выпрямления

Однофазная однополупериодная схема выпрямления с активной нагрузкой является наиболее простой из всех выпрямительных схем (рисунок 4.1, а).

На рисунке 4.1,б представлены графики напряжений и токов в схеме. По оси абсцисс этих графиков отложен фазовый угол t, где — круговая частота питающего сетевого напряжения. Вместо величиныt на графиках может быть отложено текущее время t.

Ha данной схеме (рисунок 4.1, а) и в нижеследующих схемах выпрямления вентильные элементы представим обобщенно в виде диодов (VD).

Рисунок 4.1 — Однофазная однополупериодная схема выпрямления (а) и диа­граммы напряжений и токов в схеме (б)

Известно, что условием прохождения тока через вентиль (выпрямительный диод) является наличие на его аноде положительного потенциала по отношению к катоду. Допустим, что положительный потенциал на аноде VD в данной схеме появляется при положительной полуволне напряжения (потенциал точки а схемы положителен, а точки б — отрицателен), следовательно, в первую половину периода диод открывается и по цепи последовательно соединенных обмотки трансформатора, диода и нагрузки протекают равные токи iVD=i=i2. Во вторую половину периода точка а имеет отрицательный потенциал, следовательно диод закрывается и ток в цепи отсутствует.

Таким образом, ток через диод и нагрузку протекает только в течение одного полупериода, поэтому схема назы­вается однополупериодной.

Поскольку в идеализированной схеме выпрямления в трансформаторе и вентиле (диоде) потерь нет, то в пер­вом полупериоде все напряжение вторичной обмотки транс­форматора u2 оказывается приложенным к нагрузке RH, и поэтому график выпрямленного напряжения u повторя­ет положительную полусинусоиду графика напряжения u2 (рисунок 4.1, б).

Графики токов, протекающих по выпрямительному дио­ду VD, нагрузке RH, вторичной обмотке трансформатора, будут одинаковы, т.е. iVD=i=i2; ординаты графика этих токов в данной (идеализированной) схеме определяются со­отношением u/RH.

Мгновенное значение тока в первичной обмотке трансформатора определяется выражением

где n21 = U2/U1, а I — постоянная составляющая выпрямленного тока i.

Ток первичной обмотки определяется переменным напряжением сети u и не может содержать постоянной составляющей. Поэтому значение постоянной составляющей Iо вычитается из мгновенного значения i тока вторичной обмотки. Таким образом, разность (i2 — Iо), измененная в n21 раз, будет представлять собой график тока первичной обмотки i1 (n21 в данном случае для простоты принят равным единице).

Во время второго полупериода напряжения u2 диод закрыт а, следовательно, все напряжение вторичной обмотки трансформатора u2 оказывается приложенным к последовательно соединенным нагрузке RН и диоду VD. Поскольку обратное сопротивление диода намного больше сопротивления нагрузки RН, то с достаточной для практики точностью сопротивлением нагрузки в данном случае можно пренебречь, т. е. можно считать, что во время второго полупериода к зажимам диода в обратном направлении приложено напряжение uобр, график которого повторяет отрицательную полусинусоиду напряжения вторичной обмотки трансформатора u2 (рисунок 4.1,б).

В рассматриваемой схеме постоянная составляющая выпрямленного тока Iо, протекая по вторичной обмотке трансформатора, создает вынужденное подмагничивание его магнитопровода.

Основным преимуществом однополупериодной схемы является простота.

К недостаткам схемы относятся:

1) большой коэффициент пульсации выпрямленного напряжения КП01

2) большие масса и объем трансформатора (вследствие плохого использования обмоток и вынужденного подмагничивания магнитопровода трансформатора).

Вследствие указанных недостатков однофазная однополупериодная схема при работе на активную нагрузку практического применения не нашла.